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6.231 DYNAMIC PROGRAMMING

LECTURE 9

LECTURE OUTLINE

e DP for imperfect state info
e Sufficient statistics

e (onditional state distribution as a sufficient
statistic

e Finite-state systems

e Examples



REVIEW:PROBLEM WITH IMPERFECT STATE INF

e Instead of knowing xi, we receive observations

20 = ho(zo,v0), 2k = hig(Tk, Uk—1,vk), k>0

e [;: information vector available at time k:

I() — 20, Ik — (20,21,...,zk,uo,ul,...,uk_l), /432 1

e Optimization over policies m = {uo, 41, ..., UN—-1},
where pg(I) € Ug, for all Iy, and k.

e Find a policy 7 that minimizes

Jr = ,E {QN(37N) T 2_: gk (mknuk(fk)awk)}

k=0

subject to the equations
Trr1 = fr(@n, pr(li), wi), k>0,

20 = ho(20,v0), 2k = hi(zk, pr—1(Tk-1),vk), k>1



DP ALGORITHM

e DP algorithm:

Jk(]k)rz min [ E {gk(mk,uk,umJ
ug €Uk Loy, wi, 249

+ Jr+1 (T, 2k41, Uk) | Ikauk}:|

for k=0,1,...,N — 2, and for k = N — 1,

JN—l(IN—1> = min
un—1€UNn—1

{ E {QN (fN_l(UCN—l,UN—l,’wN—l))

TN—-1,WN—-1

+ognv—1(xN—1,UN—1,WN_1) | IN—1,UN—1}

e The optimal cost J* is given by

J* = g{(]o(z())}.



SUFFICIENT STATISTICS

e Suppose that we can find a function Sk ([ ) such
that the right-hand side of the DP algorithm can
be written in terms of some function Hj as

min Hg (Sk(Ig), uk).
o k( k(Lk) k)
e Such a function Si is called a sufficient statistic.

e An optimal policy obtained by the preceding
minimization can be written as

i (k) = T (S (Ik)),

where 1, is an appropriate function.
e Example of a sufficient statistic: Si([Ix) = I

e Another important sufficient statistic

Sk(Ix) = P,

k15



DP ALGORITHM IN TERMS OF Px, 1,

e It turns out that P, |7, is generated recursively
by a dynamic system (estimator) of the form

Pa:k_|_1|1k_|_1 — @k (ka|1k7uk7 Zk—l‘l)

for a suitable function ®y

e DP algorithm can be written as

jk(Pa:ka): min { i) {gk(mkaukvwk)

up €U, Log, wy,zp41

+ T 1 (Pi( Py 1, > Uk, 2641)) | Ik uk}}
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EXAMPLE: A SEARCH PROBLEM

e At each period, decide to search or not search
a site that may contain a treasure.

e If we search and a treasure is present, we find
it with prob. 8 and remove it from the site.

e Treasure’s worth: V. Cost of search: C
e States: treasure present & treasure not present

e Fach search can be viewed as an observation of
the state

e Denote
pr : prob. of treasure present at the start of time &

with po given.

e p; evolves at time k according to the equation

( Dk if not search,
pry1 =< U if search and find treasure,
pp—0) if search and no treasure
\ p(1-B)+1—pg '



SEARCH PROBLEM (CONTINUED)

e DP algorithm

Ji(pr) = max {0, —C + pr BV

+ (1 = prB) ki1 <pk(1p—k(ﬁ1)_+ﬁ1)— pk) }’

with Jn(pn) = 0.

e Can be shown by induction that the functions
J 1. satisty

Te(ps) =0, forall py < 5%

e Furthermore, it is optimal to search at period
k if and only if

pBV > C

(expected reward from the next search > the cost
of the search)



FINITE-STATE SYSTEMS

e Suppose the system is a finite-state Markov
chain, with states 1,...,n.

e Then the conditional probability distribution
P, |1, 1s a vector

(P(:Uk:1|Ik),...,P(CUk:n|Ik))

e The DP algorithm can be executed over the n-
dimensional simplex (state space is not expanding
with increasing k)

e When the control and observation spaces are
also finite sets, it turns out that the cost-to-go
functions J; in the DP algorithm are piecewise
linear and concave (Exercise 5.7).

e This is conceptually important and also (mod-
erately) useful in practice.



INSTRUCTION EXAMPLE

e ‘Teaching a student some item. Possible states
are L: Item learned, or L: Item not learned.

e DPossible decisions: 7: Terminate the instruc-
tion, or T: Continue the instruction for one period
and then conduct a test that indicates whether the
student has learned the item.

e The test has two possible outcomes: R: Student
gives a correct answer, or R: Student gives an
incorrect answer.

e Probabilistic structure

e (Cost of instruction is I per period

e Cost of terminating instruction; 0 if student has
learned the item, and C' > 0 if not.



INSTRUCTION EXAMPLE II

e Let pr: prob. student has learned the item given
the test results so far

Pr = P(:Uk‘fk) = P(a?k = L ‘ zo,zl,...,zk).

e Using Bayes’ rule we can obtain

pk—|—1 — (P(pk, Zk‘|‘1)
{ 1—(1-t)(1—pg) if 21 = R,

T=(1-D (-7 (1—pk) i
0 if Zk+1 — R.

e DP algorithm:

Ji(px) = min [(1 —-pe)C, I+ E {7k+1 (‘P(pk,ZkH))} :

Zk+1

starting with

jN_l(pN_l) — min [(1—])]\{_1)0, I—I—(l—t)(l—pN_l)C].



INSTRUCTION EXAMPLE III

e Write the DP algorithm as

7k(pk) = min[(l —pk)C, I + Ak(pk)],

where

Ag(pr) = P(zr41 = R | 1) T2 (2(pr, R))
+ P(zi1 = R | Ix) ki1 (q)(plmﬁ))

e Can show by induction that Ay (p) are piecewise
linear, concave, monotonically decreasing, with

Ap-1(p) < Ag(p) < Agya(p),  forallp €[0,1].

I+ Ay ,(P)




