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LECTURE 1
 

TRODUCTION TO THE COURSE
 AN IN

LECTURE OUTLINE 

• The Role of Convexity in Optimization
 

• Duality Theory 

• Algorithms and Duality 

• Course Organization 



HISTORY AND PREHISTORY
 

•	 Prehistory: Early 1900s - 1949. 
− Caratheodory, Minkowski, Steinitz, Farkas. 
− Properties of convex sets and functions. 

Fenchel - Rockafellar era: 1949 - mid 1980s.
• 

−	 Duality theory. 
−	 Minimax/game theory (von Neumann). 
−	 (Sub)differentiability, optimality conditions, 

sensitivity. 

•	 Modern era - Paradigm shift: Mid 1980s - present. 
− Nonsmooth analysis (a theoretical/esoteric 

direction). 
− Algorithms (a practical/high impact direc

tion). 
−	 A change in the assumptions underlying the 

field. 



OPTIMIZATION PROBLEMS
 

ric form: Gene• 

minimize f(x) 
subject to x ∈ C 

Cost function f : �n �→ �, constraint set C, e.g., 

C = X ∩ 
�
x | h1(x) = 0, . . . , hm(x) = 0

� 

∩ 
�
x | g1(x) ≤ 0, . . . , gr(x) ≤ 0

� 

•	 Continuous vs discrete problem distinction 

• Convex programming problems are those for 
which f and C are convex 

− They are continuous problems 
−	 They are nice, and have beautiful and intu

itive structure 

• However, convexity permeates all of optimiza
tion, including discrete problems 

• Principal vehicle for continuous-discrete con
nection is duality: 
− The dual problem of a discrete problem is 

continuous/convex 

−	 The dual problem provides important infor
mation for the solution of the discrete primal 
(e.g., lower bounds, etc) 



WHY IS CONVEXITY SO SPECIAL?
 

A convex function has no local minima that are • 
not global 

A nonconvex function can be “convexified” while • 
maintaining the optimality of its global minima 

•	 A convex set has a nonempty relative interior 

A convex set is connected and has feasible di• 
rections at any point 

• The existence of a global minimum of a convex 
function over a convex set is conveniently charac
terized in terms of directions of recession 

• A polyhedral convex set is characterized in 
terms of a finite set of extreme points and extreme 
directions 

A real-valued convex function is continuous and • 
has nice differentiability properties 

• Closed convex cones are self-dual with respect 
to polarity 

Convex, lower semicontinuous functions are self
• 
dual with respect to conjugacy 



DUALITY 

• Two different views of the same object.
 

• Example: Dual description of signals. 

Time domain Frequency domain

• Dual description of closed convex sets
 

A union of points An intersection of halfspaces



DUAL DESCRIPTION OF CONVEX FUNCTIONS



• Define a closed convex function by its epigraph.
 

• Describe the epigraph by hyperplanes. 

• Associate hyperplanes with crossing points (the 
conjugate function). 

x

Slope = y

0

(−y, 1)

f(x)

inf
x∈"n

{f(x)− x′y} = −f!(y)

Primal Description Dual Description

Values f(x) Crossing points f∗(y)



FENCHEL PRIMAL AND DUAL PROBLEMS
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FENCHEL DUALITY
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1 (y) + f∗
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min
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{
f1(x) + f2(x)

}
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{
− f!

1 (y)− f!
2 (−y)
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•	 Under favorable conditions (convexity): 
− The optimal primal and dual values are equal 
− The optimal primal and dual solutions are 

related 



A MORE ABSTRACT VIEW OF DUALITY
 

• Despite its elegance, the Fenchel framework is 
somewhat indirect. 

•	 From duality of set descriptions, to
 

− duality of functional descriptions, to
 

− duality of problem descriptions.
 

•	 A more direct approach: 
− Start with a set, then 

− Define two simple prototype problems dual 
to each other. 

• Avoid functional descriptions (a simpler, less 
constrained framework). 



MIN COMMON/MAX CROSSING DUALITY
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• All of duality theory and all of (convex/concave) 
minimax theory can be developed/explained in 
terms of this one figure. 

• The machinery of convex analysis is needed to 
flesh out this figure, and to rule out the excep
tional/pathological behavior shown in (c). 



ABSTRACT/GENERAL DUALITY ANALYSIS
 

Minimax Duality Constrained Optimization
Duality

Min-Common/Max-Crossing
Theorems

p
Theorems of the
Alternative etc( MinMax = MaxMin )

Abstract Geometric Framework

Special choices
of M

(Set M)



EXCEPTIONAL BEHAVIOR
 

If convex structure is so favorable, what is the • 
source of exceptional/pathological behavior? 

• Answer: Some common operations on convex 
sets do not preserve some basic properties. 

• Example: A linearly transformed closed con
vex set need not be closed (contrary to compact 
and polyhedral sets). 
−	 Also the vector sum of two closed convex sets 

need not be closed. 

x1

x2

C1 =
{
(x1, x2) | x1 > 0, x2 > 0, x1x2 ≥ 1

}

C2 =
{
(x1, x2) | x1 = 0

}

• This is a major reason for the analytical difficul
ties in convex analysis and pathological behavior 
in convex optimization (and the favorable charac
ter of polyhedral sets). 



MODERN VIEW OF CONVEX OPTIMIZATION


Traditional view: Pre 1990s • 

− LPs are solved by simplex method 

− NLPs are solved by gradient/Newton meth
ods 

− Convex programs are special cases of NLPs 

LP CONVEX NLP

Duality Gradient/NewtonSimplex

Modern view: Post 1990s • 

− LPs are often solved by nonsimplex/convex 
methods 

− Convex problems are often solved by the same 
methods as LPs 

− “Key distinction is not Linear-Nonlinear but 
Convex-Nonconvex” (Rockafellar) 

LP CONVEX NLP

Simplex Gradient/NewtonDuality
Cutting plane
Interior point
Subgradient



THE RISE OF THE ALGORITHMIC ERA 

•	 Convex programs and LPs connect around 

 Duality −
− Large-scale piecewise linear problems 

•	 Synergy of: 
− Duality 

− Algorithms 
− Applications 

•	 New problem paradigms with rich applications 

•	 Duality-based decomposition 

− Large-scale resource allocation 

− Lagrangian relaxation, discrete optimization 

− Stochastic programming 

•	 Conic programming 

− Robust optimization 

− Semidefinite programming 

•	 Machine learning 

− Support vector machines 
− l1 regularization/Robust regression/Compressed 

sensing 



METHODOLOGICAL TRENDS
 

w methods, renewed interest in old methods.

Interior point methods 

Ne• 

−	 

−	 Subgradient/incremental methods 
−	 Polyhedral approximation/cutting plane meth

ods
 
− Regularization/proximal methods
 
− Incremental methods
 

•	 Renewed emphasis on complexity analysis 
− Nesterov, Nemirovski, and others ... 
− “Optimal algorithms” (e.g., extrapolated gra

dient methods) 

• Emphasis on interesting (often duality-related) 
large-scale special structures 



.

COURSE OUTLINE 

ill follow closely the textbook 

rtsekas, “Convex Optimization Theory,” 

•	 We w
− Be

Athena Scientific, 2009, including the on-line 
Chapter 6 and supplementary material at
 
http://www.athenasc.com/convexduality.html 

Additional book references: • 

− Rockafellar, “Convex Analysis,” 1970. 
− Boyd and Vanderbergue, “Convex Optimiza

tion,” Cambridge U. Press, 2004. (On-line at 
http://www.stanford.edu/~boyd/cvxbook/) 

− Bertsekas, Nedic, and Ozdaglar, “Convex Anal

ysis and Optimization,” Ath. Scientific, 2003.


• Topics (the text’s design is modular, and the 
following sequence involves no loss of continuity): 
− Basic Convexity Concepts: Sect. 1.1-1.4. 
− Convexity and Optimization: Ch. 3. 
− Hyperplanes & Conjugacy: Sect. 1.5, 1.6. 
− Polyhedral Convexity: Ch. 2. 
− Geometric Duality Framework: Ch. 4. 
− Duality Theory: Sect. 5.1-5.3. 
− Subgradients: Sect. 5.4.
 
− Algorithms: Ch. 6.
 

http://www.athenasc.com/convexduality.html
http://www.stanford.edu/~boyd/cvxbook/


WHAT TO EXPECT FROM THIS COURSE
 

• Requirements: Homework (25%), midterm (25%), 
and a term paper (50%) 

We aim: • 

−	 To develop insight and deep understanding 
of a fundamental optimization topic 

−	 To treat with mathematical rigor an impor
tant branch of methodological research, and 
to provide an account of the state of the art 
in the field 

−	 To get an understanding of the merits, limi
tations, and characteristics of the rich set of 
available algorithms 

Mathematical level: • 

− Prerequisites are linear algebra (preferably 
abstract) and real analysis (a course in each) 

− Proofs will matter ... but the rich geometry 
of the subject helps guide the mathematics 

•	 Applications: 
− They are many and pervasive ... but don’t 

expect much in this course. The book by 
Boyd and Vandenberghe describes a lot of 
practical convex optimization models 

−	 You can do your term paper on an applica
tion area 



A NOTE ON THESE SLIDES
 

hese slides are a teaching aid, not a text 

on’t expect a rigorous mathematical develop

• T

• D
ment 

• The statements of theorems are fairly precise, 
but the proofs are not 

• Many proofs have been omitted or greatly ab
breviated 

• Figures are meant to convey and enhance un
 
derstanding of ideas, not to express them precisely
 

• The omitted proofs and a fuller discussion can 
be found in the “Convex Optimization Theory” 
textbook and its supplementary material 



LECTURE 2
 

LECTURE OUTLINE
 

Convex sets and functions • 

•	 Epigraphs 

Closed convex functions • 

• Recognizing convex functions 

Reading: Section 1.1 



SOME MATH CONVENTIONS 

ll of our work is done in �n: space of n-tuples • A
x = (x1, . . . , xn) 

All vectors are assumed column vectors • 

• “�” denotes transpose, so we use x� to denote a 
row vector 

x�y is the inner product 
�n

i=1 xiyi of vectors x• 
and y 

�x� = 
√
x�x is the (Euclidean) norm of x. We • 

use this norm almost exclusively 

See the textbook for an overview of the linear
• 
algebra and real analysis background that we will 
use. Particularly the following: 
− Definition of sup and inf of a set of real num

bers 
−	 Convergence of sequences (definitions of lim inf, 

lim sup of a sequence of real numbers, and 
definition of lim of a sequence of vectors) 

− Open, closed, and compact sets and their 
properties 

− Definition and properties of differentiation 



CONVEX SETS
 

αx + (1− α)y, 0 ≤ α ≤ 1

yx x

y

x

y

x

y

•	 A subset C of �n is called convex if 

αx + (1 − α)y ∈ C, ∀ x, y ∈ C, ∀ α ∈ [0, 1] 

•	 Operations that preserve convexity 

−	 Intersection, scalar multiplication, vector sum, 
closure, interior, linear transformations 

•	 Special convex sets: 
− Polyhedral sets: Nonempty sets of the form 

{x | a�j x ≤ bj , j = 1, . . . , r} 

(always convex, closed, not always bounded) 
− Cones: Sets C such that λx ∈ C for all 
λ > 0 and x C (not always convex or ∈
closed) 



CONVEX FUNCTIONS
 

a f(x) + (1 - a )f(y)

x y

C

f(a x + (1 - a )y)

a x + (1 - a )y

f(x)

f(y)

αx + (1− α)y

C

x y

f(x)

f(y)

αf(x) + (1− α)f(y)

f
(
αx + (1 − α)y

)

• Let C be a convex subset of �n. A function 
f : C �→ � is called convex if for all α ∈ [0, 1] 

f
�
αx+(1−α)y

� 
≤ αf(x)+(1−α)f(y), ∀ x, y ∈ C
 

If the inequality is strict whenever a ∈ (0, 1) and 
x = y, then f is called strictly convex over C. 

If f is a convex function, then all its level sets
• 
{x ∈ C | f(x) ≤ γ} and {x ∈ C | f(x) < γ}, 
where γ is a scalar, are convex. 



EXTENDED REAL-VALUED FUNCTIONS
 

f(x)

x
Convex function

f(x)

x
Nonconvex function

Epigraph Epigraphf(x) f(x)

xx

Epigraph Epigraph

Convex function Nonconvex function

dom(f) dom(f)

• The epigraph of a function f : X �→ [−∞, ∞] is 
the subset of �n+1 given by 

epi(f) = 
�
(x, w) | x ∈ X, w ∈ �, f(x) ≤ w

�
 

The effective domain of f is the set • 

dom(f) = 
�
x ∈ X | f(x) < ∞

� 

• We say that f is convex if epi(f) is a convex 
set. If f(x) > −∞ for all x ∈ X and X is convex, 
the definition “coincides” with the earlier one. 

• We say that f is closed if epi(f) is a closed set.
 

• We say that f is lower semicontinuous at a 
vector x ∈ X if f(x) ≤ lim infk→∞ f(xk) for every 
sequence {xk} ⊂ X with xk x.→ 



CLOSEDNESS AND SEMICONTINUITY I
 

• Proposition: For a function f : �n �→ [−∞, ∞], 
the following are equivalent: 

(i) Vγ = {x | f(x) ≤ γ} is closed for all γ ∈ �. 

(ii) f is lower semicontinuous at all x ∈ �n. 

(iii) f is closed. 

f(x)

x{
x | f(x) ≤ γ

}

γ

epi(f)

(ii) (iii): Let 
�
(xk, wk)

� 
⊂ epi(f) with • ⇒

(xk, wk) 
(x, w). Then f(xk) ≤ wk, and →


f(x) ≤ lim inf f(xk) ≤ w so (x, w) ∈ epi(f)
 
k→∞ 

(iii) (i): Let {xk} ⊂ Vγ and xk x. Then• ⇒ →
(xk, γ) ∈ epi(f) and (xk, γ) (x, γ), so (x, γ) ∈
epi(f), and x ∈ Vγ . 

→ 

• (i) ⇒ (ii): If xk → x and f(x) > γ > lim infk→∞ f(xk) 
consider subsequence {xk}K → x with f(xk) ≤ γ 
- contradicts closedness of Vγ . 



CLOSEDNESS AND SEMICONTINUITY II
 

• Lower semicontinuity of a function is a “domain-
specific” property, but closeness is not: 
−	 If we change the domain of the function with

out changing its epigraph, its lower semicon
tinuity properties may be affected. 

−	 Example: Define f : (0, 1) [−∞, ∞] and 
f̂ : [0, 1] [−∞, ∞] by 

→ 
→ 

f(x) = 0, ∀ x ∈ (0, 1), 

f̂(x) = 
� 

0 if x ∈ (0, 1), 
∞ if x = 0 or x = 1. 

Then f and f̂  have the same epigraph, and 
both are not closed. But f is lower-semicon
tinuous while f̂  is not. 

Note that: • 

− If f is lower semicontinuous at all x ∈ dom(f), 
it is not necessarily closed 

− If f is closed, dom(f) is not necessarily closed 

• Proposition: Let f : X �→ [−∞, ∞] be a func
tion. If dom(f) is closed and f is lower semicon
tinuous at all x ∈ dom(f), then f is closed. 



f(x) f(x)

x

ROPER AND IMPROPER CONVEX FUNCTION


f(x) f (x) 

x 

dom(f ) dom(f ) 
x 

epi(f) epi(f) 

Not Closed Improper Function Closed Improper Function 

• We say that f is proper if f(x) < ∞ for at least 
one x ∈ X and f(x) > −∞ for all x ∈ X, and we 
will call f improper if it is not proper. 

• Note that f is proper if and only if its epigraph

is nonempty and does not contain a “vertical line.”


• An improper closed convex function is very pe
culiar: it takes an infinite value (∞ or −∞) at  
every point. 



RECOGNIZING CONVEX FUNCTIONS
 

• Some important classes of elementary convex 
functions: Affine functions, positive semidefinite 
quadratic functions, norm functions, etc. 

• Proposition: Let fi : �n �→ (−∞, ∞], i ∈ I, be 
given functions (I is an arbitrary index set). 

(a) The function g : �n �→ (−∞, ∞] given by 

g(x) = λ1f1(x) + + λmfm(x), λi > 0· · · 

is convex (or closed) if f1, . . . , fm are convex (re
spectively, closed). 

(b) The function g : �n �→ (−∞, ∞] given by 

g(x) = f(Ax) 

where A is an m × n matrix is convex (or closed) 
if f is convex (respectively, closed). 

(c) The function g : �n �→ (−∞, ∞] given by 

g(x) = sup fi(x) 
i∈I 

is convex (or closed) if the fi are convex (respec
tively, closed). 



LECTURE 3
 

LECTURE OUTLINE
 

Differentiable Convex Functions
• 

Convex and Affine Hulls • 

•	 Caratheodory’s Theorem 

Relative Interior • 

Reading: Sections 1.1, 1.2, 1.3.0 



DIFFERENTIABLE CONVEX FUNCTIONS
 

zx

f(z)

f(x) +∇f(x)′(z − x)

• Let C ⊂ �n be a convex set and let f : �n �→ � 
be differentiable over �n. 

(a) The function f is convex over C iff 

f(z) ≥ f(x) + (z − x)��f(x), ∀ x, z ∈ C 

(b) If the inequality is strict whenever	 x = z,
 
then f is strictly convex over C. 



PROOF IDEAS
 

z

x

x

f(x) + (z − x)′∇f(x)

f(z)

f(z)

αf(x) + (1− α)f(y)

f(x)

f(y)

z = αx + (1 − α)y
y

f(z) + (y − z)′∇f(z)
f(z) + (x− z)′∇f(z)

(a)

(b)

x + α(z − x)

f(x) +
f
(
x + α(z − x)

)
− f(x)

α



OPTIMALITY CONDITION
 

• Let C be a nonempty convex subset of �n and 
let f : �n �→ � be convex and differentiable over 
an open set that contains C. Then a vector x∗ ∈ C 
minimizes f over C if and only if 

�f(x∗)�(x − x∗) ≥ 0, ∀ x ∈ C. 

Proof: If the condition holds, then 

f(x) ≥ f(x∗)+(x−x∗)��f(x∗) ≥ f(x∗), ∀ x ∈ C, 

so x∗ minimizes f over C. 
Converse: Assume the contrary, i.e., x∗ min

imizes f over C and �f(x∗)�(x − x∗) < 0 for some 
x ∈ C. By differentiation, we have 

f
�
x∗ + α(x − x∗)

� 
− f(x∗)

lim = �f(x∗)�(x−x∗) < 0 
α 0 α↓ 

so f
�
x∗ + α(x − x∗)

� 
decreases strictly for suffi

ciently small α > 0, contradicting the optimality 
of x∗. Q.E.D. 



TWICE DIFFERENTIABLE CONVEX FNS
 

• Let C be a convex subset of �n and let f : 
�n �→ � be twice continuously differentiable over 

.�n 

(a) If �2f(x) is positive semidefinite for all x ∈
C, then f is convex over C. 

(b) If �2f(x) is positive definite for all x ∈ C, 
then f is strictly convex over C. 

(c) If C is open and f is convex over C, then
 
�2f(x) is positive semidefinite for all x ∈ C. 

Proof: (a) By mean value theorem, for x, y ∈ C
 

f(y) = f(x)+(y−x)��f(x)+ 1
2 (y−x)��2f

�
x+α(y−x)

�
(y−x) 

for some α ∈ [0, 1]. Using the positive semidefi
niteness of �2f , we obtain 

f(y) ≥ f(x) + (y − x)��f(x), ∀ x, y ∈ C
 

From the preceding result, f is convex.
 

(b) Similar to (a), we have f(y) > f(x) + (y − 
x)��f(x) for all x, y ∈ C with x =� y, and we use 
the preceding result. 

(c) By contradiction ... similar. 



CONVEX AND AFFINE HULLS
 

 Given a set X ⊂ �n: 

A convex combination of elements of X is a 
m 

•	

• 
vector of the form 

�
αixi, where xi ∈ X, αi ≥

0, and 
�m

i=1 αi = 1. 
i=1 

• The convex hull of X, denoted conv(X), is the 
intersection of all convex sets containing X. (Can 
be shown to be equal to the set of all convex com
binations from X). 

• The affine hull of X, denoted aff(X), is the in
tersection of all affine sets containing X (an affine 
set is a set of the form x + S, where S is a sub
space). 

• A nonnegative combination of elements of X is 
a vector of the form 

�m 
αixi, where xi ∈ X andi=1 

αi	 ≥ 0 for all i. 

• The cone generated by X, denoted cone(X), is 
the set of all nonnegative combinations from X: 
− It is a convex cone containing the origin. 
− It need not be closed! 
−	 If X is a finite set, cone(X) is closed (non

trivial to show!) 



CARATHEODORY’S THEOREM
 

x x24

conv(X)

xx
x

x1

x1
x2

x3

cone(X)

X

(a) (b)

x

0

• Let X be a nonempty subset of �n. 

(a) Every x = 0 in cone(X) can be represented
 
as a positive combination of vectors x1, . . . , xm 

from X that are linearly independent (so 
m ≤ n). 

(b) Every x ∈/ X that belongs to conv(X) can 
be represented as a convex combination of 
vectors x1, . . . , xm from X with m ≤ n + 1. 



PROOF OF CARATHEODORY’S THEOREM
 

(a) Let x be a nonzero vector in cone(X), and 
let m be the smallest integer such that x has the 
form 

�m 
αixi, where αi > 0 and xi ∈ X fori=1 

all i = 1, . . . ,m. If the vectors xi were linearly 
dependent, there would exist λ1, . . . , λm, with 

m� 
λixi = 0 

i=1 

and at least one of the λi is positive. Consider
 
m
�

(αi − γλi)xi, 
i=1 

where γ is the largest γ such that αi − γλi ≥ 0 for 
all i. This combination provides a representation 
of x as a positive combination of fewer than m vec
tors of X – a contradiction. Therefore, x1, . . . , xm, 
are linearly independent. 

(b) Use “lifting” argument: apply part (a) to Y = �
(x, 1) | x ∈ X

�
. 

Y

x

X

0

1
(x, 1)

!n



AN APPLICATION OF CARATHEODORY
 

 The convex hull of a compact set is compact.
 •
Proof: Let X be compact. We take a sequence 
in conv(X) and show that it has a convergent sub
sequence whose limit is in conv(X). 

By Caratheodory, a sequence in conv(X) can 

be expressed as 
��n+1 

�
, where for all k andi=1 αi

kxi
k 

ki, αk ≥ 0, x ∈ X, and 
�n+1 

αk = 1. Since the i i i=1 i 
sequence 

k k k
�
(α1 

k, . . . , αn+1, x1 , . . . , xn+1)
� 

is bounded, it has a limit point 

�
(α1, . . . , αn+1, x1, . . . , xn+1)

�
, 

which must satisfy 
�n+1 

αi = 1, and αi ≥ 0,i=1 
xi ∈ X for all i. 

The vector 
�n+1 

αixi belongs to conv(X)i=1 

and is a limit point of 
��n+1 

αk k
�

, showing i=1 i xi
 

that conv(X) is compact. Q.E.D.
 

Note that the convex hull of a closed set need • 
not be closed! 



RELATIVE INTERIOR
 

 a relative interior point of C, if x i
r point of C relative to aff(C). 

• x is s an 
interio

• ri(C) denotes the relative interior of C, i.e., the 
set of all relative interior points of C. 

• Line Segment Principle: If C is a convex set, 
x ∈ ri(C) and x ∈ cl(C), then all points on the 
line segment connecting x and x, except possibly 
x, belong to ri(C). 

x

C xα = αx+(1−α)x

x

S
Sαε

αε

• Proof of case where x ∈ C: See the figure. 

• Proof of case where x ∈/ C: Take sequence 
{xk} ⊂ C with xk x. Argue as in the figure. → 



ADDITIONAL MAJOR RESULTS
 

• Let C be a nonempty convex set. 

(a) ri(C) is a nonempty convex set, and has the 
same affine hull as C. 

(b)	 Prolongation Lemma: x ∈ ri(C) if and 
only if every line segment in C having x 
as one endpoint can be prolonged beyond x 
without leaving C. 

z2

C

X

z1

z1 and z2 are linearly
independent, belong to
C and span aff(C)

0

Proof: (a) Assume that 0 ∈ C. We choose m lin
early independent vectors z1, . . . , zm ∈ C, where 
m is the dimension of aff(C), and we let 

m	 m 
� 

X = 

� � 
αizi 

���
� 

αi < 1, αi > 0, i = 1, . . . ,m 
i=1 i=1 

(b) => is clear by the def. of rel. interior. Reverse:
 
take any x ∈ ri(C); use Line Segment Principle.
 



• � �

OPTIMIZATION APPLICATION
 

 A concave function f : n   that attains its → �
minimum over a convex set X at an x∗ ∈ ri(X) 
must be constant over X. 

X

x

x
x∗

aff(X)

Proof: (By contradiction) Let x X be such
∈
that f(x) > f(x∗). Prolong beyond x∗ the line 
segment x-to-x∗ to a point x ∈ X. By concavity 
of f , we have for some α ∈ (0, 1) 

f(x∗) ≥ αf(x) + (1 − α)f(x), 

and since f(x) > f(x∗), we must have f(x∗) > 
f(x) - a contradiction. Q.E.D. 

• Corollary: A linear function can attain a min
inum only at the boundary of a convex set. 



LECTURE 4
 

LECTURE OUTLINE
 

•	 Algebra of relative interiors and closures
 

•	 Continuity of convex functions 

Closures of functions • 

• Recession cones and lineality space 

Reading: Sections 1.31-1.3.3, 1.4.0 



CALCULUS OF REL. INTERIORS: SUMMARY
 

• The ri(C) and cl(C) of a convex set C “differ 
very little.” 

− Any set “between” ri(C) and cl(C) has the 
same relative interior and closure. 

− The relative interior of a convex set is equal 
to the relative interior of its closure. 

−	 The closure of the relative interior of a con
vex set is equal to its closure. 

Relative interior and closure commute with • 
Cartesian product and inverse image under a lin
 
ear transformation. 

• Relative interior commutes with image under a 
linear transformation and vector sum, but closure 
does not. 

Neither relative interior nor closure commute • 
with set intersection. 



CLOSURE VS RELATIVE INTERIOR 

• Proposition: 

(a) We have cl(C) = cl
�
ri(C)

� 
and ri(C) = ri

�
cl(C)

�
.
 

(b) Let C be another nonempty convex set. Then
 
the following three conditions are equivalent:
 

(i) C and C have the same rel. interior.
 

(ii) C and C have the same closure. 

(iii) ri(C) ⊂ C ⊂ cl(C). 

Proof: (a) Since ri(C) ⊂ C, we have cl
�
ri(C)

� 
⊂

cl(C). Conversely, let x ∈ cl(C). Let x ∈ ri(C). 
By the Line Segment Principle, we have 

αx + (1 − α)x ∈ ri(C), ∀ α ∈ (0, 1]. 

Thus, x is the limit of a sequence that lies in ri(C), 
so x ∈ cl

�
ri(C)

�
. 

x

x
C

The proof of ri(C) = ri
�
cl(C)

� 
is similar.
 



LINEAR TRANSFORMATIONS
 

• Let C be a nonempty convex subset of �n and
let A be an m  n matrix. 

 
×

(a) We have A ri(C) = ri(A C).· · 
(b) We have A cl(C) ⊂ cl(A C). Furthermore,
· · 

if C is bounded, then A cl(C) = cl(A C).· · 
Proof: (a) Intuition: Spheres within C are mapped
 
onto spheres within A C (relative to the affine
· 
hull). 

(b) We have A cl(C) ⊂ cl(A C), since if a sequence
· · 
{xk} ⊂ C converges to some x ∈ cl(C) then the 
sequence {Axk}, which belongs to A C, converges · 
to Ax, implying that Ax ∈ cl(A C).· 

To show the converse, assuming that C is 
bounded, choose any z ∈ cl(A C). Then, there · 
exists {xk} ⊂ C such that Axk z. Since C is→
bounded, {xk} has a subsequence that converges 
to some x ∈ cl(C), and we must have Ax = z. It 
follows that z ∈ A cl(C). Q.E.D.· 

Note that in general, we may have 

A int(C) = int(A C), A cl(C) = cl(A C)
· � · · � · 



� 

INTERSECTIONS AND VECTOR SUMS
 

• Let C1 and C2 be nonempty convex sets. 

(a) We have
 

ri(C1 + C2) = ri(C1) + ri(C2),
 

cl(C1) + cl(C2) ⊂ cl(C1 + C2)
 

If one of C1 and C2 is bounded, then 

cl(C1) + cl(C2) = cl(C1 + C2) 

(b) If ri(C1) ∩ ri(C2) = Ø, then
 

ri(C1 ∩ C2) = ri(C1) ∩ ri(C2),
 

cl(C1 ∩ C2) = cl(C1) ∩ cl(C2)
 

Proof of (a): C1 + C2 is the result of the linear 
transformation (x1, x2) �→ x1 + x2. 

• Counterexample for (b): 

C1 = {x | x ≤ 0}, C2 = {x | x ≥ 0} 



CARTESIAN PRODUCT - GENERALIZATION
 

•	 Let C be convex set in �n+m. For x ∈ �n, let 

Cx = {y | (x, y) ∈ C}, 

and let
 
D = {x | Cx =� Ø}.
 

Then
 

ri(C) = 
�
(x, y) | x ∈ ri(D), y ∈ ri(Cx)

�
.
 

Proof: Since D is projection of C on x-axis, 

ri(D) = 
�
x | there exists y ∈ �m with (x, y) ∈ ri(C)

�
, 

so that 

ri(C) = ∪x∈ri(D) 

�
Mx ∩ ri(C)

� 
, 

where Mx = 
�
(x, y) | y ∈ �m

�
. For every x ∈
 

ri(D), we have
 

Mx ∩ ri(C) = ri(Mx ∩ C) = 
�
(x, y) | y ∈ ri(Cx)

�
.
 

Combine the preceding two equations. Q.E.D.
 



CONTINUITY OF CONVEX FUNCTIONS
 

• If f : �n �→ � is convex, then it is continuous. 

0

xk

xk+1

yk

zk

e1 = (1, 1)

e2 = (1,−1)e3 = (−1,−1)

e4 = (−1, 1)

Proof: We will show that f is continuous at 0.
 
By convexity, f is bounded within the unit cube
 
by the max value of f over the corners of the cube.
 

Consider sequence xk 0 and the sequences 
yk 

→ 
Then= xk/�xk�∞, zk = −xk/�xk�∞. 

f(xk) ≤ 
�
1 − �xk�∞

�
f(0) + �xk�∞f(yk) 

f(0) ≤ �xk�∞ 
f(zk) + 

1 
f(xk) �xk�∞ + 1 �xk�∞ + 1 

Take limit as k →∞. Since �xk�∞ → 0, we have 

lim sup �xk�∞f(yk) ≤ 0, lim sup 
�xk�∞ 

f(zk) ≤ 0 
k→∞ k→∞ �xk�∞ + 1 

so f(xk) f(0). Q.E.D.→ 

• Extension to continuity over ri(dom(f)). 



CLOSURES OF FUNCTIONS
 

The closure of a function f : X �→ [−∞, 
n

∞] is 
e function cl f : �  �→ [−∞, ∞] with 


 

• 
th

epi(cl f) = cl
�
epi(f)

�

The convex closure of f is the function cľ f with
• 

epi(cľ f) = cl
�
conv

�
epi(f)

��
 

• Proposition: For any f : X �→ [−∞, ∞] 

inf f(x) = inf (cl f)(x) = inf (cľ f)(x).
 
x∈X x∈�n x∈�n 

Also, any vector that attains the infimum of f over 
X also attains the infimum of cl f and cľ f . 

• Proposition: For any f : X �→ [−∞, ∞]: 

(a) cl f (or cľ f) is the greatest closed (or closed
 
convex, resp.) function majorized by f .
 

(b) If f is convex, then cl f is convex, and it is
 
proper if and only if f is proper. Also,
 

(cl f)(x) = f(x), ∀ x ∈ ri
�
dom(f)

�
,
 

and if x ∈ ri
�
dom(f)

� 
and y ∈ dom(cl f), 

(cl f)(y) = lim f
�
y + α(x − y)

�
.
 

α 0↓ 



RECESSION CONE OF A CONVEX SET
 

 Given a nonempty convex set C, a vector d is •
a direction of recession if starting at any x in C 
and going indefinitely along d, we never cross the 
relative boundary of C to points outside C: 

x + αd ∈ C, ∀ x ∈ C, ∀ α ≥ 0
 

x

C

0

d

x + αd

Recession Cone RC

• Recession cone of C (denoted by RC ): The set 
of all directions of recession. 

• RC is a cone containing the origin. 



RECESSION CONE THEOREM
 

• Let C be a nonempty closed convex set. 

(a) The recession cone	 RC is a closed convex 
cone. 

(b) A vector d belongs to RC if and only if there 
exists some vector x ∈ C such that x + αd ∈
C for all α ≥ 0. 

(c)	 RC contains a nonzero direction if and only 
if C is unbounded. 

(d) The recession cones of C and ri(C) are equal.
 

(e) If D is another closed convex set such that 
C ∩ D =� Ø, we have 

RC∩D = RC ∩ RD 

More generally, for any collection of closed 
convex sets Ci, i ∈ I, where I is an arbitrary 
index set and ∩i∈I Ci is nonempty, we have 

R∩i∈I Ci = ∩i∈I RCi 



PROOF OF PART (B)
 

x

C

z1 = x + d

z2

z3

x

x + d

x + d1

x + d2

x + d3

Let d = 0 be such that there exists a vector 
x ∈ C with x + αd ∈ C for all α ≥ 0. We fix
 
x ∈ C and α > 0, and we show that x + αd ∈ C.
 
By scaling d, it is enough to show that x + d ∈ C.
 

For k = 1, 2, . . ., let 

(zk − x) 
zk = x + kd, dk = �zk − x��d� 

We have 

dk �zk − x� d x − x �zk − x� x − x 
= + , 1, 0, �d� �zk − x� �d� �zk − x� �zk − x� → �zk − x� → 

so dk d and x + dk x + d. Use the convexity → →
and closedness of C to conclude that x + d ∈ C.
 



LINEALITY SPACE
 

• The lineality space of a convex set C, denoted by 
LC , is the subspace of vectors d such that d ∈ RC 

and −d ∈ RC : 

LC = RC ∩ (−RC ) 

• If d ∈ LC , the entire line defined by d is con
tained in C, starting at any point of C. 

• Decomposition of a Convex Set: Let C be a 
nonempty convex subset of �n. Then, 

C = LC + (C ∩ L⊥).C 

• Allows us to prove properties of C on C ∩ L⊥C 
and extend them to C. 

• True also if LC is replaced by a subspace S ⊂
LC . 

x

C

S

S⊥

C ∩ S⊥

0
d

z



LECTURE 5 

LECTURE OUTLINE 

Directions of recession of convex functions • 

• Local and global minima 

• Existence of optimal solutions
 

Reading: Sections 1.4.1, 3.1, 3.2
 



DIRECTIONS OF RECESSION OF A FN
 

We aim to characterize directions of monotonic • 
decrease of convex functions. 

• Some basic geometric observations: 
− The “horizontal directions” in the recession 

cone of the epigraph of a convex function f 
are directions along which the level sets are 
unbounded. 

− Along these directions the level sets 
�
x 

f(x) ≤ γ
� 

are unbounded and f is mono-
| 

tonically nondecreasing. 

These are the directions of recession of f .• 

γ

epi(f)

Level Set Vγ = {x | f(x) ≤ γ}

“Slice” {(x,γ) | f(x) ≤ γ}

Recession
Cone of f

0



RECESSION CONE OF LEVEL SETS
 

• Proposition: Let f : �n �→ (−∞, ∞] be a closed 
proper convex function and consider the level sets 
Vγ = 

�
x | f(x) ≤ γ

�
, where γ is a scalar. Then: 

(a) All the nonempty level sets Vγ have the same 
recession cone: 

RVγ = 
�
d | (d, 0) ∈ Repi(f)

� 

(b) If one nonempty level set Vγ is compact, then 
all level sets are compact. 

Proof: (a) Just translate to math the fact that 

RVγ = the “horizontal” directions of recession of epi(f) 

(b) Follows from (a). 



RECESSION CONE OF A CONVEX FUNCTION
 

• For a closed proper convex function f : �n �→
(−∞, ∞], the (common) recession cone of the nonempty 
level sets Vγ = 

�
x | f(x) ≤ γ

�
, γ ∈ �, is the re

cession cone of f , and is denoted by Rf . 

0

Recession Cone Rf

Level Sets of f

•	 Terminology: 
− d ∈ Rf : a direction of recession of f . 
− Lf = Rf ∩ (−Rf ): the lineality space of f . 
− d ∈ Lf : a direction of constancy of f . 

•	 Example: For the pos. semidefinite quadratic 

f(x) = x�Qx + a�x + b, 

the recession cone and constancy space are 

Rf	 = {d | Qd = 0, a�d ≤ 0}, Lf = {d | Qd = 0, a�d = 0} 



• Fun � �

RECESSION FUNCTION
 

ction rf : n  ( , ] whose epigraph→ −∞ ∞  
is Repi(f) is the recession function of f . 

Characterizes the recession cone: • 

Rf = 
�
d | rf (d) ≤ 0

�
, Lf = 

�
d | rf (d) = rf (−d) = 0

� 

since Rf = {(d, 0) ∈ Repi(f)}. 
Can be shown that • 

rf (d) = sup 
f(x + αd) − f(x) 

= lim 
f(x + αd) − f(x) 

α>0 α α→∞ α 

• Thus rf (d) is the “asymptotic slope” of f in the 
direction d. In fact, 

rf (d) = lim ∀ x, d ∈ �n 
α→∞ 

�f(x + αd)�d, 

if f is differentiable. 

Calculus of recession functions: • 

rf1+ +fm (d) = rf1 (d) + + rfm (d),··· · · · 

rsupi∈I fi (d) = sup rfi (d) 
i∈I 



DESCENT BEHAVIOR OF A CONVEX FN
 

f(x + a y)

a

f(x)

(a)

f(x + a y)

a

f(x)

(b)

f(x + a y)

a

f(x)

(c)

f(x + a y)

a

f(x)

(d)

f(x + a y)

a

f(x)

(e)

f(x + a y)

a

f(x)

(f)

α α

αα

α α

f(x)

f(x)

f(x)

f(x)

f(x)

f(x)

f(x + αd)

f(x + αd) f(x + αd)

f(x + αd)

f(x + αd)f(x + αd)

rf (d) = 0

rf (d) = 0 rf (d) = 0

rf (d) < 0

rf (d) > 0 rf (d) > 0

• y is a direction of recession in (a)-(d). 

• This behavior is independent of the starting 
point x, as long as x ∈ dom(f). 



• � �

LOCAL AND GLOBAL MINIMA
 

 Consider minimizing f : n  ( , ] over a → −∞ ∞
set X ⊂ �n 

• x is feasible if x ∈ X ∩ dom(f) 

• x∗ is a (global) minimum of f over X if x∗ is 
feasible and f(x∗) = infx∈X f(x) 

x∗ is a local minimum of f over X if x∗ is a • 
minimum of f over a set X ∩ {x | �x − x∗� ≤ �} 

Proposition: If X is convex and f is convex, 
then: 

(a) A local minimum of f over X is also a global 
minimum of f over X. 

(b) If f is strictly convex, then there exists at
 
most one global minimum of f over X.
 

f(x)

αf(x∗) + (1− α)f(x)

f
(
αx∗ + (1− α)x

)

0 x∗x x



• The set of minima of a proper f : �n �

EXISTENCE OF OPTIMAL SOLUTIONS
 

→
(−∞, ∞] is the intersection of its nonempty level 
sets. 

• The set of minima of f is nonempty and com
pact if the level sets of f are compact. 

• (An Extension of the) Weierstrass’ Theo
rem: The set of minima of f over X is nonempty 
and compact if X is closed, f is lower semicontin
uous over X, and one of the following conditions 
holds: 

(1) X is bounded. 

(2) Some set 
�
x ∈ X | f(x) ≤ γ

� 
is nonempty 

and bounded. 

(3) For every sequence {xk} ⊂ X s. t. �xk� → 
∞, we have limk→∞ f(xk) = ∞. (Coercivity 
property). 

Proof: In all cases the level sets of f ∩X are 
compact. Q.E.D. 



� 

EXISTENCE OF SOLUTIONS - CONVEX CASE
 

     • Weierstrass’ Theorem specialized to con
vex functions: Let X be a closed convex subset 
of �n, and let f : �n �→ (−∞, ∞] be closed con
vex with X ∩ dom(f) = Ø. The set of minima of 
f over X is nonempty and compact if and only 
if X and f have no common nonzero direction of 
recession. 

Proof: Let f∗ = infx∈X f(x) and note that f∗ < 
∞ since X ∩ dom(f) =� Ø. Let {γk} be a scalar 
sequence with γk f∗, and consider the sets ↓ 

Vk = 
�
x | f(x) ≤ γk

�
. 

Then the set of minima of f over X is 

X∗ = ∩∞k=1(X ∩ Vk). 

The sets X ∩ Vk are nonempty and have RX ∩ Rf 

as their common recession cone, which is also the 
recession cone of X∗, when X∗ = Ø. It follows X∗ 

is nonempty and compact if and only if RX ∩Rf = 
{0}. Q.E.D. 



• Let fi : �n �

EXISTENCE OF SOLUTION, SUM OF FNS
 

→ (−∞, ∞], i = 1, . . . ,m, be closed 
proper convex functions such that the function 

f = f1 + + fm· · · 

is proper. Assume that the recession function of 
a single function fi satisfies rfi (d) = ∞ for all 
d = 0. Then the set of minima of f is nonempty 
and compact. 

• Proof: The set of minima of f is nonempty and 
compact if and only if Rf = {0}, which is true if 
and only if rf (d) > 0 for all d = 0. Q.E.D. 

• Example of application: If one of the fi is 
positive definite quadratic, the set of minima of 
the sum f is nonempty and compact. 

• Also f has a unique minimum because the pos
itive definite quadratic is strictly convex, which 
makes f strictly convex. 



PROJECTION THEOREM
 

• Let C be a nonempty closed convex set in �n. 

(a) For every z ∈ �n, there exists a unique min
imum of
 

f(x) = �z − x�2
 

over all x ∈ C (called the projection of z on 
C). 

(b) x∗ is the projection of z if and only if 

(x − x∗)�(z − x∗) ≤ 0, ∀ x ∈ C 

Proof: (a) f is strictly convex and has compact 
level sets. 

(b) This is just the necessary and sufficient opti
mality condition 

�f(x∗)�(x − x∗) ≥ 0, ∀ x ∈ C. 



LECTURE 6
 

LECTURE OUTLINE
 

•	 Nonemptiness of closed set intersections 

•	 Existence of optimal solutions 

•	 Linear and quadratic programming 

Preservation of closure under linear transforma• 
tion 

Reading: Sections 1.4.2, 1.4.3 



ROLE OF CLOSED SET INTERSECTIONS I
 

• A fundamental question: Given a sequence
 
of nonempty closed sets {Ck} in �n with Ck+1 ⊂

for all k, when is ∩∞ nonempty? Ck k=0Ck 

• Set intersection theorems are significant in at 
least three major contexts, which we will discuss 
in what follows: 

1. Does a function f : �n �→ (−∞, ∞] attain a 
minimum over a set X? This is true if and only if 

Intersection of nonempty 
�
x ∈ X | f(x) ≤ γk

� 

is nonempty. 

Optimal
Solution

Level Sets of f

X



ROLE OF CLOSED SET INTERSECTIONS II
 

2. If C is closed and A is a matrix, is AC closed?
 
Special case: 
− If C1 and C2 are closed, is C1 + C2 closed? 

x

Nk

AC

C

y yk+1 yk

Ck

3. If F (x, z) is closed, is f(x) = infz F (x, z) 
closed? (Critical question in duality theory.) Can 
be addressed by using the relation 

P 
�
epi(F )

� 
⊂ epi(f) ⊂ cl

�
P 

�
epi(F )

��
 

where P ( ) is projection on the space of (x, w).
· 



ASYMPTOTIC SEQUENCES
 

• Given nested sequence {Ck} of closed convex 
sets, {xk} is an asymptotic sequence if 

= 0, k = 0, 1, . . . xk ∈ Ck, xk � 

xk d �xk� → ∞, �xk�
→ �d� 

where d is a nonzero common direction of recession 
of the sets Ck. 

• As a special case we define asymptotic sequence 
of a closed convex set C (use Ck ≡ C). 

• Every unbounded {xk} with xk ∈ Ck has an 
asymptotic subsequence. 

• {xk} is called retractive if for some k, we have 

xk − d ∈ Ck, ∀ k ≥ k. 

x0

x1
x2

x3

x4 x5

0
d

Asymptotic Direction

Asymptotic Sequence



RETRACTIVE SEQUENCES
 

• A nested sequence {Ck} of closed convex sets 
is retractive if all its asymptotic sequences are re-
tractive. 

x0x0

x1

x2

S0

S2
S1

(a) Retractive

0

(b) Nonretractive

d

x0

x1

x2
S0

S1

Intersection
Intersection

0

d

d

S2
x3

C0

C0

C1

C1

C2

C2
x0

x1

x1
x2

x2

x3

(a) Retractive Set Sequence (b) Nonretractive Set Sequence

Intersection ∩∞k=0Ck Intersection ∩∞k=0Ck

d

d

0

0

• A closed halfspace (viewed as a sequence with 
identical components) is retractive. 

• Intersections and Cartesian products of retrac
tive set sequences are retractive. 

• A polyhedral set is retractive. Also the vec
tor sum of a convex compact set and a retractive 
convex set is retractive. 

• Nonpolyhedral cones and level sets of quadratic 
functions need not be retractive. 



SET INTERSECTION THEOREM I
 

Proposition: If {Ck} is retractive, then ∩∞ Ckk=0 
is nonempty. 

• Key proof ideas: 

(a) The intersection ∩∞ Ck is empty iff the sek=0 
quence {xk} of minimum norm vectors of Ck 

is unbounded (so a subsequence is asymp
totic). 

(b) An asymptotic sequence	 {xk} of minimum 
norm vectors cannot be retractive, because 
such a sequence eventually gets closer to 0 
when shifted opposite to the asymptotic di
rection. 

x0

x1
x2

x3

x4 x5

0
d

Asymptotic Direction

Asymptotic Sequence



SET INTERSECTION THEOREM II
 

roposition: Let {Ck} be a nested sequence of 
nempty closed convex sets, and X be a retrac

P
no
tive set such that all the sets Ck = X ∩ Ck are 
nonempty. Assume that 

RX ∩ R ⊂ L, 

where 

RCk ,	 L	= ∩∞ LCkR = ∩∞k=0 k=0

Then {Ck} is retractive and ∩∞ Ck is nonempty. k=0 

•	 Special cases: 
− X = �n, R = L (“cylindrical” sets Ck) 
− RX ∩R = {0} (no nonzero common recession 

direction of X and ∩kCk) 

Proof: The set of common directions of recession 
of Ck is RX ∩ R. For any asymptotic sequence 
{xk} corresponding to d ∈ RX ∩ R: 

(1) xk − d ∈ Ck (because d ∈ L) 

(2) xk − d ∈ X (because X is retractive) 

So {Ck} is retractive. 



NEED TO ASSUME THAT X IS RETRACTIVE
 

CkCk+1

X

CkCk+1

X

Consider k=0 Ck, with Ck = X ∩ Ck∩∞ 

• The condition RX ∩ R ⊂ L holds 

• In the figure on the left, X is polyhedral. 

• In the figure on the right, X is nonpolyhedral 
and nonretrative, and 

∩∞ Ck = Øk=0 



LINEAR AND QUADRATIC PROGRAMMING
 

 Theorem: Let•

f (x) = x�Qx + c�x, X = {x | a�j x + bj ≤ 0, j = 1, . . . , r} 

where Q is symmetric positive semidefinite. If the 
minimal value of f over X is finite, there exists a 
minimum of f over X. 

Proof: (Outline) Write 

Set of Minima = ∩∞ 
�
X ∩ {x | x�Qx+c�x ≤ γk}

�
k=0 

with
 
γk f∗ = inf f(x).
↓ 

x∈X 

Verify the condition RX ∩ R ⊂ L of the preceding 
set intersection theorem, where R and L are the 
sets of common recession and lineality directions 
of the sets 

{x | x�Qx + c�x ≤ γk} 

Q.E.D. 



CLOSURE UNDER LINEAR TRANSFORMATION



• Let C be a nonempty closed convex, and let A 
be a matrix with nullspace N(A). 

(a)	 AC is closed if RC ∩ N(A) ⊂ LC . 

(b)	 A(X ∩ C) is closed if X is a retractive set
 
and
 

RX ∩ RC ∩ N(A) ⊂ LC , 

Proof: (Outline) Let {yk} ⊂ AC with yk y.→
We prove ∩∞ Ck �= Ø, where Ck = C ∩ Nk, and k=0 

Nk = {x | Ax ∈ Wk}, Wk = 
�
z | �z−y� ≤ �yk−y�

� 

x

Nk

AC

C

y yk+1 yk

Ck

• Special Case: AX is closed if X is polyhedral.
 



NEED TO ASSUME THAT X IS RETRACTIVE
 

A(X C)

C

X

C

X

A(X C)

N(A) N(A)

C C

N(A) N(A)

X

X

A(X ∩ C) A(X ∩ C)

Consider closedness of A(X ∩ C)
 

•	 In both examples the condition 

RX ∩ RC ∩ N(A) ⊂ LC 

is satisfied. 

• However, in the example on the right, X is not 
retractive, and the set A(X ∩ C) is not closed. 



CLOSEDNESS OF VECTOR SUMS 

Let C1, . . . , Cm be nonempty closed convex sub• 
sets of �n such that the equality d1 + + dm = 0 · · · 
for some vectors di ∈ RCi implies that di = 0 for 
all i = 1, . . . ,m. Then C1 + + Cm is a closed · · · 
set. 

• Special Case: If C1 and −C2 are closed convex 
sets, then C1 − C2 is closed if RC1 ∩ RC2 = {0}. 
Proof: The Cartesian product C = C1 ×· · ·×Cm 

is closed convex, and its recession cone is RC = 
RC1 . Let A be defined by × · · · × RCm 

A(x1, . . . , xm) = x1 + + xm· · · 

Then 
AC = C1 + + Cm,· · · 

and 

N(A) = 
�
(d1, . . . , dm) | d1 + · · · + dm = 0

� 

RC ∩N(A) = 
�

(d1, . . . , dm) | d1+· · ·+dm = 0, di ∈ RCi , ∀ i
� 

By the given condition, RC ∩N(A) = {0}, so AC 
is closed. Q.E.D. 



LECTURE 7
 

LECTURE OUTLINE
 

Partial Minimization • 

• Hyperplane separation 

• Proper separation 

• Nonvertical hyperplanes
 

Reading: Sections 3.3, 1.5
 



• Let F : �n+m �

PARTIAL MINIMIZATION
 

→ (−∞, ∞] be a closed proper 
convex function, and consider 

f(x) = inf F (x, z)
 
z∈�m 

1st fact: If F is convex, then f is also convex.
• 

2nd fact: • 

P 
�
epi(F )

� 
⊂ epi(f) ⊂ cl

�
P 

�
epi(F )

�� 
,
 

where P ( ) denotes projection on the space of (x, w),
· 
i.e., for any subset S of �n+m+1, P (S) = 

�
(x, w) |

(x, z, w) ∈ S
�
. 

• Thus, if F is closed and there is structure guar
anteeing that the projection preserves closedness, 
then f is closed. 

• ... but convexity and closedness of F does not 
guarantee closedness of f . 



PARTIAL MINIMIZATION: VISUALIZATION
 

• Connection of preservation of closedness under 
partial minimization and attainment of infimum 
over z for fixed x. 

x

z

w

x1

x2

O

F (x, z)

f(x) = inf
z

F (x, z)

epi(f)

x

z

w

x1

x2

O

F (x, z)

f(x) = inf
z

F (x, z)

epi(f)

• Counterexample: Let 

� 
e−
√

xz if x ≥ 0, z ≥ 0,F (x, z) = ∞ otherwise.
 

F convex and closed, but
• 

� 0 if x > 0, 
f(x) = inf F (x, z) = 1 if x = 0, 

z∈� if x < 0,∞ 

is not closed. 



• Let F : �n+m �

PARTIAL MINIMIZATION THEOREM 

→ (−∞, ∞] be a closed proper 
convex function, and consider f(x) = infz∈�m F (x, z). 

• Every set intersection theorem yields a closed-
ness result. The simplest case is the following: 

Preservation of Closedness Under Com
• 
pactness: If there exist x ∈ �n, γ ∈ � such that 
the set 

�
z | F (x, z) ≤ γ

� 

is nonempty and compact, then f is convex, closed, 
and proper. Also, for each x ∈ dom(f), the set of 
minima of F (x, ) is nonempty and compact.· 

x

z

w

x1

x2

O

F (x, z)

f(x) = inf
z

F (x, z)

epi(f)

x

z

w

x1

x2

O

F (x, z)

f(x) = inf
z

F (x, z)

epi(f)



HYPERPLANES
 

a

x

Negative Halfspace

Positive Halfspace
{x | a′x ≥ b}

{x | a′x ≤ b}

Hyperplane
{x | a′x = b} = {x | a′x = a′x}

• A hyperplane is a set of the form {x | a�x = b}, 
where a is nonzero vector in �n and b is a scalar. 

• We say that two sets C1 and C2 are separated 
by a hyperplane H = {x | a�x = b} if each lies in a 
different closed halfspace associated with H, i.e., 

either a�x1 ≤ b ≤ a�x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2, 

or a�x2 ≤ b ≤ a�x1, ∀ x1 ∈ C1, ∀ x2 ∈ C2 

• If x belongs to the closure of a set C, a hyper
plane that separates C and the singleton set {x}
is said be supporting C at x. 



VISUALIZATION 

• Separating and supporting hyperplanes:
 

a

(a)

C1 C2

x

a

(b)

C

• A separating {x | a�x = b} that is disjoint from 
C1 and C2 is called strictly separating: 

a�x1 < b < a�x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2 

(a)

C1 C2

x

a

(b)

C1

C2
x1

x2



SUPPORTING HYPERPLANE THEOREM
 

• Let C be convex and let x be a vector that is 
not an interior point of C. Then, there exists a
 
hyperplane that passes through x and contains C
 
in one of its closed halfspaces. 

a

C

x

x0

x1

x2
x3

x̂0

x̂1

x̂2
x̂3

a0

a1

a2
a3

Proof: Take a sequence {xk} that does not be
long to cl(C) and converges to x. Let x̂k be the 
projection of xk on cl(C). We have for all x ∈
cl(C) 

a�kx ≥ a�kxk, ∀ x ∈ cl(C), ∀ k = 0, 1, . . . , 

where ak = (x̂k − xk)/�x̂k − xk�. Let a be a limit 
point of {ak}, and take limit as k →∞. Q.E.D. 



SEPARATING HYPERPLANE THEOREM
 

• Let C1 and C2 be two nonempty convex subsets

of �n. If C1 and C2 are disjoint, there exists a

hyperplane that separates them, i.e., there exists

a vector a = 0 such that


a�x1 ≤ a�x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2. 

Proof: Consider the convex set 

C1 − C2 = {x2 − x1 | x1 ∈ C1, x2 ∈ C2} 

Since C1 and C2 are disjoint, the origin does not 
belong to C1 − C2, so by the Supporting Hyper
plane Theorem, there exists a vector a = 0 such
 
that 

0 ≤ a�x, ∀ x ∈ C1 − C2, 

which is equivalent to the desired relation. Q.E.D.
 



STRICT SEPARATION THEOREM
 

• Strict Separation Theorem: Let C1 and C2 

be two disjoint nonempty convex sets. If C1 is 
closed, and C2 is compact, there exists a hyper
plane that strictly separates them. 

(a)

C1 C2

x

a

(b)

C1

C2
x1

x2

Proof: (Outline) Consider the set C1 −C2. Since 
C1 is closed and C2 is compact, C1 − C2 is closed. 
Since C1 ∩ C2 = Ø, 0 ∈/ C1 − C2. Let x1 − x2 

be the projection of 0 onto C1 − C2. The strictly 
separating hyperplane is constructed as in (b). 

• Note: Any conditions that guarantee closed-
ness of C1 − C2 guarantee existence of a strictly 
separating hyperplane. However, there may exist 
a strictly separating hyperplane without C1 − C2 

being closed. 



ADDITIONAL THEOREMS
 

undamental Characterization: The clo
 of the convex hull of a set C n is the

F• 

sure ⊂ �
intersection of the closed halfspaces that contain
 
C. (Proof uses the strict separation theorem.) 

• We say that a hyperplane properly separates C1 

and C2 if it separates C1 and C2 and does not fully 
contain both C1 and C2. 

(a)

C1 C2

a

C1 C2

a

(b)

a

C1 C2

(c)

• Proper Separation Theorem: Let C1 and 
C2 be two nonempty convex subsets of �n. There 
exists a hyperplane that properly separates C1 and 
C2 if and only if 

ri(C1) ∩ ri(C2) = Ø 



PROPER POLYHEDRAL SEPARATION
 

Recall that two convex sets C and P such that • 

ri(C) ∩ ri(P ) = Ø 

can be properly separated, i.e., by a hyperplane 
that does not contain both C and P . 

• If P is polyhedral and the slightly stronger con
 
dition 

ri(C) ∩ P = Ø 

holds, then the properly separating hyperplane 
can be chosen so that it does not contain the non-
polyhedral set C while it may contain P . 

(a) (b)

a

P

C
Separating
Hyperplane

a

C

P

Separating
Hyperplane

On the left, the separating hyperplane can be cho
sen so that it does not contain C. On the right 
where P is not polyhedral, this is not possible. 



NONVERTICAL HYPERPLANES
 

• A hyperplane in �n+1 with normal (µ, β) is 
nonvertical if β = 0. 

• It intersects the (n+1)st axis at ξ = (µ/β)�u+w, 
where (u, w) is any vector on the hyperplane. 

0 u

w

(µ, β)

(u, w)
µ

β

′
u + w

Nonvertical
Hyperplane

Vertical
Hyperplane

(µ, 0)

• A nonvertical hyperplane that contains the epi
graph of a function in its “upper” halfspace, pro
vides lower bounds to the function values. 

• The epigraph of a proper convex function does 
not contain a vertical line, so it appears plausible 
that it is contained in the “upper” halfspace of 
some nonvertical hyperplane. 



NONVERTICAL HYPERPLANE THEOREM
 

 Let C be a nonempty convex subset of n+1 • �
that contains no vertical lines. Then: 

(a)	 C is contained in a closed halfspace of a non-
vertical hyperplane, i.e., there exist µ ∈ �n, 
β ∈ � with β =� 0, and γ ∈ � such that 
µ�u + βw ≥ γ for all (u, w) ∈ C. 

(b) If (u, w) ∈/ cl(C), there exists a nonvertical 
hyperplane strictly separating (u, w) and C. 

Proof: Note that cl(C) contains no vert. line [since 
C contains no vert. line, ri(C) contains no vert. 
line, and ri(C) and cl(C) have the same recession 
cone]. So we just consider the case: C closed. 

(a) C is the intersection of the closed halfspaces 
containing C. If all these corresponded to vertical 
hyperplanes, C would contain a vertical line. 

(b) There is a hyperplane strictly separating (u, w) 
and C. If it is nonvertical, we are done, so assume 
it is vertical. “Add” to this vertical hyperplane a 
small �-multiple of a nonvertical hyperplane con
taining C in one of its halfspaces as per (a). 



LECTURE 8
 

LECTURE OUTLINE
 

• Convex conjugate functions 

• Conjugacy theorem 

• Examples 

• Support functions
 

Reading: Section 1.6
 



CONJUGATE CONVEX FUNCTIONS
 

•	 Consider a function f and its epigraph 

Nonvertical hyperplanes supporting epi(f) 
�→ Crossing points of vertical axis 

f�(y) = sup 
�
x�y − f(x)

�
, y ∈ �n . 

x∈�n 

x

Slope = y

0

(−y, 1)

f(x)

inf
x∈"n

{f(x)− x′y} = −f!(y)

• For any f : �n �→ [−∞, ∞], its conjugate convex 
function is defined by 

f�(y) = sup 
�
x�y − f(x)

�
, y ∈ �n 

x∈�n 



EXAMPLES


 

sup 

�
x′y − f(x) 

�
, y ∈ �n

∈�n 
f�(y) = 

x

f (x) =  (c/2)x2 

f(x) =  |x| 

f (x) =  αx − β 

x 

x 

x 

y 

y 

y 

β 

α 

−1 1 

Slope = α 

0 

0 

00 

0 

0 

β 
f �(y) =  

� 
if y = α 

∞ if y = α 

0 i 
f �(y) =  

� 
f |y| ≤ 1 

∞ if |y| > 1 

− β 

f �(y) =  (1/2c)y2 

� 



CONJUGATE OF CONJUGATE 

From the definition • 

f�(y) = sup 
�
x�y − f(x)

�
, y ∈ �n, 

x∈�n 

note that f� is convex and closed . 

• Reason: epi(f�) is the intersection of the epigraphs 
of the linear functions of y 

x�y − f(x) 

as x ranges over �n. 

•	 Consider the conjugate of the conjugate: 

f��(x) = sup 
�
y�x − f�(y)

�
, x ∈ �n. 

y∈�n
 

f�� is convex and closed.
• 

• Important fact/Conjugacy theorem: If f 
is closed proper convex, then f�� = f . 



CONJUGACY THEOREM - VISUALIZATION
 

f�(y) = sup x�y − f(x) , y ∈ �n 

x n 

� �
∈�

f��(x) = sup 
�
y�x − f�(y)

�
, x ∈ �n 

y∈�n 

• If f is closed convex proper, then f�� = f . 

x

Slope = y

0

f(x)
(−y, 1)

inf
x∈"n

{f(x)− x′y} = −f!(y)y′x− f!(y)

f!!(x) = sup
y∈"n

{
y′x− f!(y)

}
H =

{
(x,w) | w − x′y = −f!(y)

}Hyperplane



Let � �

CONJUGACY THEOREM
 

	f : n  ( , ] be a function, let cľ f be → −∞ ∞• 
its convex closure, let f� be its convex conjugate, 
and consider the conjugate of f�, 

f��(x) = sup 
�
y�x − f�(y)

�
, x ∈ �n 

y∈�n 

(a) We have
 

f(x) ≥ f��(x),
 ∀ x	∈ �n 

(b) If	 f is convex, then properness of any one 
of f , f�, and f�� implies properness of the 
other two. 

(c) If f is closed proper and convex, then
 

f(x) = f��(x),
 ∀ x	∈ �n 

(d) If cľ f(x) > −∞ for all x ∈ �n, then
 

cľ f(x) = f��(x),
 ∀ x	∈ �n




x

� � � � 

PROOF OF CONJUGACY THEOREM (A), (C)


• (a) For all x, y, we h ave f �(y) ≥ y′x − f(x), 
implying that f(x) ≥ sup � ��

y{y′x−f (y)} = f (x). 

• (c) By contradiction. Assume there is (x, γ) ∈ 
epi(f��) with (x, γ) ∈/ epi(f). There exists a non-
vertical hyperplane with normal (y, −1) that strictly 
separates (x, γ) and epi(f). (The vertical compo
nent of the normal vector is normalized to -1.) 

• Consider two parallel hyperplanes, translated

to pass through x, f(x) and x, f��(x) . Their 
vertical crossing points are x′y − f(x) and x′y − 
f��(x), and lie strictly above and below the cross
ing point of the strictly sep. hyperplane. Hence 

x′y − f(x) > x′y − f��(x)

which contradicts part (a). Q.E.D.


x 

epi(f) 

(y, −1)� 
x, f(x) 

� 

epi(f��) (x, γ) 

� 
x, f��(x) 

� 

0 

x′y − f(x) 

x′y − f��(x) 



A COUNTEREXAMPLE
 

 counterexample (with closed convex but im
er f) showing the need to assume properness 
der for f = f��: 

 

• A
prop
in or

f(x) = 
if x > 0,


�
∞ 
−∞ if x ≤ 0. 

We have 

f�(y) = ∞, y ∈ �n, 

f��(x) = −∞, ∀ x ∈ �n. 

But 
cľ f = f, 

so cľ f = f��. 



A FEW EXAMPLES
 

lq norm conjugacy, where 1 
p + 1 

q = 1 

1  
 

n  1 
n  

= |xi |p, f�(y) = |y
q

|q 
i 

p  
i=1 i=1 

• lp and 

f(x)
� �

• Conjugate of a strictly convex quadratic
 

1
 
f(x) = x�Qx + a�x + b,

2 

1 
f�(y) = (y − a)�Q−1(y − a) − b.

2 

• Conjugate of a function obtained by invertible
 
linear transformation/translation of a function p
 

f(x) = p
�
A(x − c)

� 
+ a�x + b, 

f�(y) = q
�
(A�)−1(y − a)

� 
+ c�y + d,
 

where q is the conjugate of p and d = −(c�a + b).
 



SUPPORT FUNCTIONS
 

jugate of indicator function δX of set X 

σX (y) = sup y�x 

•	 Con

x∈X 

is called the support function of X. 

• To determine σX (y) for a given vector y, we 
project the set X on the line determined by y, 
we find x̂, the extreme point of projection in the 
direction y, and we scale by setting 

σX (y) = �x̂� · �y� 

0

y

X

σX(y)/‖y‖

x̂

•	 epi(σX ) is a closed convex cone. 

The sets X, cl(X), conv(X), and cl
�
conv(X)

� 
• 
all have the same support function (by the conju
gacy theorem). 



SUPPORT FN OF A CONE - POLAR CONE
 

 The conjugate of the indicator function δC is •
the support function, σC (y) = supx∈C y

�x. 


 If	C is a cone, •


σC (y) = 
� 0 if y�x ≤ 0, ∀ x ∈ C,
 
∞ otherwise
 

i.e., σC is the indicator function δC∗ of the cone 

C∗ = {y | y�x ≤ 0, ∀ x ∈ C}
 

This is called the polar cone of C.
 

• By the Conjugacy Theorem the polar cone of C∗ 

is cl
�
conv(C)

�
. This is the Polar Cone Theorem. 


 Special case: If C = cone
�
{a1, . . . , ar}

�
, then •


C∗ = {x | a�j x ≤ 0, j = 1, . . . , r}
 

•	 Farkas’ Lemma: (C∗)∗ = C. 

True because C is a closed set [cone
�
{a1, . . . , ar}

� 
• 
is the image of the positive orthant {α | α ≥ 0}
 
under the linear transformation that maps α to
 �r

j=1 αj aj ], and the image of any polyhedral set 
under a linear transformation is a closed set. 



LECTURE 9 

LECTURE OUTLINE 

• Min common/max crossing duality 

• Weak duality 

• Special Cases 

• Constrained optimization and minimax
 

• Strong duality 

Reading: Sections 4.1, 4.2, 3.4 



EXTENDING DUALITY CONCEPTS 

• From dual descriptions of sets 

A union of points An intersection of halfspaces

• To dual descriptions of functions (applying 
set duality to epigraphs) 

x

Slope = y

0

(−y, 1)

f(x)

inf
x∈"n

{f(x)− x′y} = −f!(y)

• We now go to dual descriptions of problems, 
by applying conjugacy constructions to a simple 
generic geometric optimization problem 



MIN COMMON / MAX CROSSING PROBLEMS
 

• We introduce a pair of fundamental problems:
 

 Let M be a nonempty subset of n+1 • �
(a)	 Min Common Point Problem: Consider all 

vectors that are common to M and the (n + 
1)st axis. Find one whose (n + 1)st compo
nent is minimum. 

(b)	 Max Crossing Point Problem: Consider non-
vertical hyperplanes that contain M in their 
“upper” closed halfspace. Find one whose 
crossing point of the (n + 1)st axis is maxi
mum. 

00

(a)

Max Crossing Point q*

M

0

(b)

M

Max Crossing Point q*

u

0

(c)

S

_
M

M
Max Crossing Point q*

Min Common Point w*

w

u

u0 0

0

u u

u

w

M M

M

M
Min Common
Point w∗

Max Crossing
Point q∗

Max Crossing
Point q∗ Max Crossing

Point q∗

(a) (b)

(c)



MATHEMATICAL FORMULATIONS
 

 Optimal value of the min common prob•
lem: 

w∗ = inf w 
(0,w)∈M 

u

w

M

M
(µ, 1)

(µ, 1)

q∗

q(µ) = inf
(u,w)∈M

{
w + µ′u}

0

Dual function value

Hyperplane Hµ,ξ =
{
(u, w) | w + µ′u = ξ

}
ξ

w∗

• Math formulation of the max crossing 
problem: Focus on hyperplanes with normals 
(µ, 1) whose crossing point ξ satisfies 

ξ ≤ w + µ�u, ∀ (u, w) ∈ M 

Max crossing problem is to maximize ξ subject to 
ξ ≤ inf(u,w)∈M {w + µ�u}, µ ∈ �n, or 

maximize q(µ) =
�


 inf 
)∈M

{w + µ�u}
(u,w 

subject to .
µ ∈ �n 



GENERIC PROPERTIES – WEAK DUALITY
 

•	 Min common problem
 

inf w
 
(0,w)∈M 

•	 Max crossing problem
 

maximize q(µ) =
�


 inf 
)∈M

{w + µ�u}
 
(u,w 

subject to .
µ ∈ �n 

u

w

M

M
(µ, 1)

(µ, 1)

q∗

q(µ) = inf
(u,w)∈M

{
w + µ′u}

0

Dual function value

Hyperplane Hµ,ξ =
{
(u, w) | w + µ′u = ξ

}
ξ

w∗

• Note that q is concave and upper-semicontinuous 
(inf of linear functions). 

• Weak Duality: For all µ ∈ �n 

q(µ) = 
(u,w 

inf 
)∈M

{w + µ�u} ≤ 
(0,w 

inf 
)∈M 

w = w∗, 

so maximizing over µ ∈ �n, we obtain q∗ ≤ w∗. 

• We say that strong duality holds if q∗ = w∗. 



CONNECTION TO CONJUGACY 

 An important special case: •

M = epi(p) 

where p : �n �→ [−∞, ∞]. Then w∗ = p(0), and 

q(µ) = inf inf 
(u,w)∈epi(p)

{w+µ�u} = 
{(u,w)|p(u)≤w}

{w+µ�u}, 

and finally 
q(µ) = inf 

�
p(u) + µ�u

� 
m u∈� 

u0

M = epi(p)

w∗ = p(0)

q∗ = p!!(0)

p(u)(µ, 1)

q(µ) = −p!(−µ)

• Thus, q(µ) = −p�(−µ) and
 

q∗ = sup q(µ) = sup 
�
0 (
 −µ)−p�(−µ)

� 
= p��(0)
·


µ∈�n µ∈�n 



• � �

GENERAL OPTIMIZATION DUALITY 

• Consider minimizing a function f : �n �→ [−∞, ∞]. 

	 Let F : n+r  [ , ] be a function with → −∞ ∞
f(x) = F (x, 0), ∀ x ∈ �n 

•	 Consider the perturbation function 

p(u) = inf F (x, u) 
x∈�n 

and the MC/MC framework with M = epi(p) 

The min common value w∗ is• 

w∗ = p(0) = inf F (x, 0) = inf f(x) 
x∈�n x∈�n 

The dual function is • 

q(µ) = inf 
�
p(u)+µ�u

� 
= inf 

�
F (x, u)+µ�u

� 

u∈� r	 (x,u)∈�n+r 

so q(µ) = −F �(0, −µ), where F � is the conjugate 
of F , viewed as a function of (x, u) 


 Since•


q∗ = sup q(µ) = − inf F �(0, −µ) = − inf F �(0, µ),
 
µ∈�r	 µ∈�r µ∈�r 

we have 

w∗ = inf F (x, 0) ≥ − inf F �(0, µ) = q∗ 
x∈�n	 µ∈�r 



CONSTRAINED OPTIMIZATION
 

• Minimize f : �n �→ � over the set 

C = 
�
x ∈ X | g(x) ≤ 0

�
, 

where X ⊂ �n and g : �n �→ �r. 

• Introduce a “perturbed constraint set” 

Cu = 
�
x ∈ X | g(x) ≤ u

�
, u ∈ �r, 

and the function 
� 
f(x) if x ∈ Cu,

F (x, u) = ∞ otherwise, 

which satisfies F (x, 0) = f(x) for all x ∈ C. 

•	 Consider perturbation function 

p(u) = inf F (x, u) = inf f(x), 
x∈�n	 x∈X, g(x)≤u 

and the MC/MC framework with M = epi(p).
 



CONSTR. OPT. - PRIMAL AND DUAL FNS
 

•	 Perturbation function (or primal function)
 

p(u) = inf F (x, u) = inf f(x),
 
x∈�n	 x∈X, g(x)≤u 

0 u

{
(g(x), f(x)) | x ∈ X

}

M = epi(p)

w∗ = p(0)

p(u)

q∗

• Introduce L(x, µ) = f(x) + µ�g(x). Then 

q(µ) = inf 
�
p(u) + µ�u

� 
r 

= 

u∈� 

inf 
�
f(x) + µ�u

� 

u∈�r , x∈X, g(x)≤u � 
infx∈X L(x, µ) if µ ≥ 0,

= −∞	 otherwise. 



LINEAR PROGRAMMING DUALITY
 

	 Consider the linear program •

minimize c�x 

subject to a�j x ≥ bj , j = 1, . . . , r, 

where c ∈ �n, aj ∈ �n, and bj ∈ �, j = 1, . . . , r. 

•	 For µ ≥ 0, the dual function has the form 

q(µ) = inf L(x, µ) 
x∈�n
 ⎫

⎬ 

⎭

µj (bj − a�j x)
 

r
� 
b�µ if 

�
j=1 aj µj = c,= −∞ otherwise 

•	 Thus the dual problem is 

maximize b�µ 
r 

subject to
 aj µj = c, µ ≥ 0.
 
j=1
 

⎧
⎨ 

⎩


r


inf
 c�x +
 

 

=
 
x∈�n
 
 

j=1




Given φ × �

MINIMAX PROBLEMS
 

: X  Z  , where X n, Z m → � ⊂ � ⊂ �
consider 

minimize sup φ(x, z)
 
z∈Z 

subject to x ∈ X 

or 
maximize inf φ(x, z)
 

x∈X 

subject to z ∈ Z. 

•	 Some important contexts: 
− Constrained optimization duality theory 

− Zero sum game theory 

•	 We always have 

sup inf φ(x, z) ≤ inf sup φ(x, z)
 
z∈Z x∈X	 x∈X z∈Z 

•	 Key question: When does equality hold? 



CONSTRAINED OPTIMIZATION DUALITY
 

•	 For the problem
 

minimize f(x)
 
subject to x ∈ X, g(x) ≤ 0
 

introduce the Lagrangian function
 

L(x, µ) = f(x) + µ�g(x)
 

• Primal problem (equivalent to the original) 

min sup L(x, µ) =
 
x∈X µ≥0


⎧
⎨ 

⎩


f(x) if g(x) ≤ 0,
 


 ∞
 otherwise,
 

•	 Dual problem 

max inf L(x, µ) 
µ≥0 x∈X 

•	 Key duality question: Is it true that
 

?

inf sup L(x, µ) = w∗ q∗ = sup inf L(x, µ) 

x∈�n 
µ≥0	 = µ≥0 x∈�n 



ZERO SUM GAMES
 

layers: 1st chooses i ∈ {1, . . . , n}, 2nd 
∈ {1, . . . ,m}. 
 j are selected, the 1st player gives aij 

• Two p
chooses j 

• If i and
to the 2nd. 

• Mixed strategies are allowed: The two players 
select probability distributions 

x = (x1, . . . , xn), z = (z1, . . . , zm) 

over their possible choices. 

• Probability of (i, j) is xizj , so the expected 
amount to be paid by the 1st player 

x�Az = 
� 

aij xizj 

i,j 

where A is the n × m matrix with elements aij . 

• Each player optimizes his choice against the 
worst possible selection by the other player. So 

− 1st player minimizes maxz x�Az
 

− 2nd player maximizes minx x�Az
 



SADDLE POINTS
 

on: (x∗, z∗) is called a saddle point of φ Definiti
if 

φ(x∗, z) ≤ φ(x∗, z∗) ≤ φ(x, z∗), ∀ x ∈ X, ∀ z ∈ Z 

Proposition: (x∗, z∗) is a saddle point if and only 
if the minimax equality holds and 

x∗ ∈ arg min sup φ(x, z), z∗ ∈ arg max inf φ(x, z) (*) 
x∈X z∈Z z∈Z x∈X 

Proof: If (x∗, z∗) is a saddle point, then 

inf sup φ(x, z) ≤ sup φ(x∗, z) = φ(x∗, z∗)
 
x∈X z∈Z z∈Z
 

= inf φ(x, z∗) ≤ sup inf φ(x, z) 
x∈X z∈Z x∈X 

By the minimax inequality, the above holds as an 
equality throughout, so the minimax equality and 
Eq. (*) hold. 

Conversely, if Eq. (*) holds, then 

sup inf φ(x, z) = inf φ(x, z∗) ≤ φ(x∗, z∗)
 
z∈Z x∈X x∈X
 

≤ sup φ(x∗, z) = inf sup φ(x, z) 
z∈Z x∈X z∈Z 

Using the minimax equ., (x∗, z∗) is a saddle point.
 



VISUALIZATION
 

x

z

Curve of maxima

Curve of minima

f (x,z)

Saddle point
(x*,z*)

^f (x(z),z)

f (x,z(x))^

The curve of maxima f(x, ẑ(x)) lies above the 
curve of minima f(x̂(z), z), where 

ẑ(x) = arg max f(x, z), x̂(z) = arg min f(x, z)
 
z x 

Saddle points correspond to points where these 
two curves meet. 



MINIMAX MC/MC FRAMEWORK
 

•	 Introduce perturbation function p : �m �→
[−∞, ∞] 

p(u) = inf sup
�
φ(x, z) − u�z

�
, 

x∈X z∈Z	 
u ∈ �m 

•	 Apply the MC/MC framework with M = epi(p) 

Introduce cl̂ f , the concave closure of f• 

We have • 

sup φ(x, z) = sup (cl̂ φ)(x, z),
 
z∈Z	 z∈�m 

so 
w∗ = p(0) = inf sup (cl̂ φ)(x, z). 

x∈X z∈�m 

The dual function can be shown to be • 

q(µ) =	 inf (cl̂ φ)(x, µ), 
x∈X 

∀ µ ∈ �m 

so if φ(x, ) is concave and closed,· 

w∗ = inf sup φ(x, z), q∗ = sup inf φ(x, z) 
x∈X z∈�m	 z∈�m x∈X 



� 

PROOF OF FORM OF DUAL FUNCTION 

•	 Write p(u) = inf
x∈X px(u), where
 

px(u) = sup
�
φ(x, z) − u�z

�
, x ∈ X,
 

z∈Z 

and note that 

inf	 
�
px(u)+u�µ

� 
= − sup 

�
u�(−µ)−px(u)

� 
= −px(−µ) 

u∈�m	 
u∈�m 

Except for a sign change, px is the conjugate of
 
(−φ)(x, ) [assuming (	 −cl̂ φ)(x, ) is proper], so
· ·


px(−µ) = −(cl̂ φ)(x, µ).
 

Hence, for all µ ∈ �m,
 

q(µ) = inf 
�
p(u) + u�µ

�
 
m u∈� 

= inf inf 
�
px(u) + u�µ

� 

u∈� m	 x∈X 

= inf inf 
�
px(u) + u�µ

� 

x∈X	u∈� m 

= inf 
� 
− px(−µ)

� 

x∈X 

= inf	(cl̂ φ)(x, µ) 
x∈X 



LECTURE 10
 

LECTURE OUTLINE
 

•	 Min Common / Max Crossing duality theorems
 

•	 Strong duality conditions 

•	 Existence of dual optimal solutions 

Nonlinear Farkas’ lemma • 

Reading: Sections 4.3, 4.4, 5.1 

00

(a)

Max Crossing Point q*

M

0

(b)

M

Max Crossing Point q*

u

0

(c)

S

_
M

M
Max Crossing Point q*

Min Common Point w*

w

u

u0 0

0

u u

u

w

M M

M

M
Min Common
Point w∗

Max Crossing
Point q∗

Max Crossing
Point q∗ Max Crossing

Point q∗

(a) (b)

(c)



M

M

(uk+1, wk+1)
(uk, wk)

M

(uk, wk)
(uk+1, wk+1)

� � 

� � 

DUALITY THEOREMS


∗ • Assume that w < ∞ and that the set 

M = (u, w) | there exists w with w ≤ w and (u, w) ∈ M 

is convex. 

• Min Common/Max Crossing Theorem I:

∗ ∗We have q = w if and only if for every sequence


(uk, wk) ⊂ M with uk → 0, there holds 

∗ w ≤ lim inf wk. 
k→∞ 

u 

w 

M 

M 

w ∗ = q ∗ (uk+1, wk+1) 
(uk, wk) 

0 

� 
(uk, wk) 

� ⊂ M, uk → 0, w  ∗ ≤ lim inf wk 
k→∞ 

w ∗ 

u 

w 

0 

q ∗ 

� 
(uk, wk) 

� ⊂ M, uk → 0, w  ∗ > lim inf wk 
k→∞ 

• Corollary: If M = epi(p) where p is closed

∗proper convex and p(0) < ∞, then q = w ∗.) 



M

M

M

� 

DUALITY THEOREMS (CONTINUED)


• Min Common/Max Crossing Theorem II: 
Assume in addition that −∞ < w∗ and that 

D = u | there exists w ∈ �  with (u, w) ∈ M}


contains the origin in its relative interior. Then 
q ∗ = w ∗ and there exists μ such that q(μ) =  q ∗ . 

D 

u 

w 

M 

M 

w ∗ = q ∗ 

0 

D 

w ∗ 

u 

w 

0 

q ∗ 

(μ, 1) 

• Furthermore, the set {μ | q(μ) =  q ∗} is nonempty 
and compact if and only if D contains the origin 
in its interior. 

• Min Common/Max Crossing Theorem

III: Involves polyhedral assumptions, and will be 
developed later. 



� �

� � 

PROOF OF THEOREM I 

  ∗ ∗ • Assume that q = w . Let (uk, wk) ⊂ M be 
such that uk → 0. Then, 

nq(μ) =  inf {w+μ′u} ≤ wk+μ′uk, ∀ k, ∀ μ ∈ �  
(u,w)∈M

Taking the limit as k → ∞, we obtain q(μ) ≤ 
nlim infk→∞ wk, for all μ ∈ �  , implying that 

∗ ∗ w = q = sup q(μ) ≤ lim inf wk 
μ∈�n k→∞ 

Conversely, assume that for every sequence 
∗(uk, wk) ⊂ M with uk → 0, there holds w ≤ 

∗lim infk→∞ wk. If w = −∞, then q ∗ = −∞, by  
∗weak duality, so assume that −∞ < w . Steps: 

• Step 1: (0, w  ∗ − ε) ∈/ cl(M) for any ε > 0. 

w ∗ 

u 

w 

M 

M 

(uk, wk) 

(uk+1, wk+1) 
w ∗ − ε (uk, 

0 

wk) 
(uk+1, 

lim inf 
k wk+1)→∞ 

wk 



� � 

PROOF OF THEOREM I (CONTINUED)


• Step 2: M does not contain any vertical lines. 
If this were not so, (0,−1) would be a direction 
of recession of cl(M). Because (0, w  ∗) ∈ cl(M), 
the entire halfline (0, w  ∗ − ε) | ε ≥ 0 belongs to 
cl(M), contradicting Step 1. 

• Step 3: For any ε > 0, since (0, w  ∗−ε) ∈/ cl(M), 
there exists a nonvertical hyperplane strictly sepa
rating (0, w  ∗ − ε) and M . This hyperplane crosses 
the (n + 1)st axis at a vector (0, ξ) with w ∗ − ε ≤ 

∗ ∗ ∗ξ ≤ w ∗, so  w − ε ≤ q ≤ w . Since ε can be 
∗ ∗arbitrarily small, it follows that q = w . 

u 

w 

M 

M 

(0, w  ∗) 

(0, w  ∗ − ε) 

0 

q(μ) 

(0, ξ) 

(μ, 1) 

Strictly Separating 
Hyperplane 



PROOF OF THEOREM II
 

 Note that (0, w∗) is not a relative interior point •
of M . Therefore, by the Proper Separation The
orem, there is a hyperplane that passes through 
(0, w∗), contains M in one of its closed halfspaces, 
but does not fully contain M , i.e., for some (µ, β) = 
(0, 0) 

βw∗ ≤ µ�u + βw, ∀ (u, w) ∈ M, 

βw∗ < sup {µ�u + βw}
(u,w)∈M 

Will show that the hyperplane is nonvertical. 

• Since for any (u, w) ∈ M , the set M contains the 
halfline 

�
(u, w) w ≤ w

�
, it follows that β ≥ 0. If 

β = 0, then 0 ≤
|
µ�u for all u ∈ D. Since 0 ∈ ri(D) 

by assumption, we must have µ�u = 0 for all u ∈ D 
a contradiction. Therefore, β > 0, and we can 
assume that β = 1. It follows that 

w∗ ≤ 
(u,w 

inf 
)∈M

{µ�u + w} = q(µ) ≤ q∗ 

Since the inequality q∗ w∗ holds always, we ≤
must have q(µ) = q∗ = w∗. 



0

� � 

�� � �


NONLINEAR FARKAS’ LEMMA


n : X → �• Let X ⊂ � , f : X → �� , and gj � , 
j = 1, . . . , r, be convex. Assume that 

f(x) ≥ 0, ∀ x ∈ X with g(x) ≤ 0 

Let 

∗Q = μ | μ ≥ 0, f(x) +  μ′g(x) ≥ 0, ∀ x ∈ X . 

∗Then Q is nonempty and compact if and only if 
there exists a vector x ∈ X such that gj (x) < 0 
for all j = 1, . . . , r.  

0} 
(μ, 1) 

(b) 

}00}}

(c) 

0} 
(μ, 1) 

(a) 

� 
(g(x), f(x)) | x ∈ X 

� � 
(g(x), f(x)) | x ∈ X 

� � 
(g(x), f(x)) | x ∈ X 

� 

� 
g(x), f(x) 

� 

• The lemma asserts the existence of a nonverti
cal hyperplane in �r+1, with normal (μ, 1), that 
passes through the origin and contains the set 

g(x), f(x) | x ∈ X


in its positive halfspace.




� � 

� � 

� � 

� � 

PROOF OF NONLINEAR FARKAS’ LEMMA


• Apply MC/MC to 

M = (u, w) | there is x ∈ X s. t. g(x) ≤ u, f(x) ≤ w


(μ, 1) 

0 u 

w 

(0, w  ∗) 

D 

such that g(x) ≤ u, f(x) ≤ w 
� 

� 
(g(x), f(x)) | x ∈ X 

� 

h th t 
M = 

� 
(u, w) | there exists x ∈ X 

� 
g(x), f(x) 

( ) ≤

� 

• M is equal to M and is formed as the union of

positive orthants translated to points g(x), f(x) , 
x ∈ X. 

• The convexity of X, f , and gj implies convexity 
of M . 

• MC/MC Theorem II applies: we have 

D = u | there exists w ∈ � with (u, w) ∈ M


and 0 ∈ int(D), because (g(x), f(x) ∈ M .




M

M

M

� 

LECTURE 11


LECTURE OUTLINE


Common/Max Crossing Th. III • Min 

• Nonlinear Farkas Lemma/Linear Constraints 

• Linear Programming Duality


Reading: Sections 4.5, 5.1-5.2


Recall the MC/MC Theorem II: If −∞ < w∗ 

and 

0 ∈ D = u | there exists w ∈ �  with (u, w) ∈ M}


then q ∗ = w ∗ and there exists μ such that q(μ) =  
q ∗ . 

D 

u 

w 

M 

M 

w ∗ = q ∗ 

0 

D 

w ∗ 

u 

w 

0 

q ∗ 

(μ, 1) 



� � 

� 

	 

MC/MC TH. III - POLYHEDRAL


• Consider the MC/MC problems, and assume 
that −∞ < w∗ and: 

(1) M is a “horizontal translation” of M̃ by −P ,


M = M̃ − (u, 0) | u ∈ P , 

where P : polyhedral and M̃ : convex. 

0} u 

M̃ 

w 

u0} 

w ∗ 

w 

(μ, 1) 

q(μ) 

u0} 

w 

M = M̃ − 
� 
(u, 0) | u ∈ P 

� 

P 

(2) We have ri(D̃) ∩ P 	= Ø, where 

D̃ = u | there exists w ∈ �  with (u, w) ∈ M̃ } 

Then q ∗ = w ∗, there is a max crossing solution, 
and all max crossing solutions μ satisfy μ′d ≤ 0 
for all d ∈ RP . 

• Comparison with Th. II: Since D = D̃ − P , 
the condition 0 ∈ ri(D) of Theorem II is 

ri(D̃) ∩ ri(P ) =  Ø 



PROOF OF MC/MC TH. III
 

onsider the disjoint convex sets C1 = (u, v) 

˜ 

|

 

C
�

• 
v > w for some (u, w) ∈ M

�
and C2 = 

�
(u, w∗) 

u ∈ P 
� 

[u ∈ P and (u, w) ∈ M̃ with w∗ > w 
| 

contradicts the definition of w∗] 

(µ, β)

0} u

v

C1

C2

M̃

w∗

P

• Since C2 is polyhedral, there exists a separat
ing hyperplane not containing C1, i.e., a (µ, β) = 
(0, 0) such that 

βw∗ + µ�z ≤ βv + µ�x, ∀ (x, v) ∈ C1, ∀ z ∈ P 

inf 
�
βv + µ�x

� 
< sup 

�
βv + µ�x

� 

(x,v)∈C1 (x,v)∈C1 

Since (0, 1) is a direction of recession of C1, we see 
that β ≥ 0. Because of the relative interior point 
assumption, β = 0, so we may assume that β = 1. 



PROOF (CONTINUED)
 

Hence,• 

w∗ + µ�z ≤ inf ∀ z ∈ P, 
(u,v)∈C1

{v + µ�u}, 
so that 

inf 
�
v + µ�(u − z)

�
w∗ ≤ 

(u,v)∈C1, z∈P 

= inf 
(u,v)∈M̃ −P 

{v + µ�u} 

= inf 
(u,v)∈M

{v + µ�u} 

= q(µ) 

Using q∗ (weak duality), we have q(µ) =≤ w∗ 

q∗ = w∗. 
Proof that all max crossing solutions µ sat

isfy µ�d ≤ 0 for all d ∈ RP : follows from 

q(µ) = inf 
�
v + µ�(u − z)

� 

(u,v)∈C1, z∈P 

so that q(µ) = −∞ if µ�d > 0. Q.E.D. 

• Geometrical intuition: every (0, −d) with d ∈
RP , is direction of recession of M . 



MC/MC TH. III - A SPECIAL CASE
 

• Consider the MC/MC framework, and assume:
 

(1) For a convex function f : �m �→ (−∞, ∞], 
an r × m matrix A, and a vector b ∈ �r: 

M = 
�
(u, w) | for some (x, w) ∈ epi(f), Ax − b ≤ u

�
 

so M = M̃ + Positive Orthant, where 

M̃ = 
�
(Ax − b, w) | (x, w) ∈ epi(f)

�
 

0} x

epi(f)

w

0} u

M̃

w∗

w

u0}

w∗

(µ, 1)

q(µ)

M = epi(p)

Ax ≤ b

(x∗, w∗) (x,w) "→ (Ax− b, w)

p(u) = inf
Ax−b≤u

f(x)

(2) There is an x ∈ ri(dom(f)) s. t. Ax − b ≤ 0. 

Then q∗ = w∗ and there is a µ ≥ 0 with q(µ) = q∗. 

• Also M = M ≈ epi(p), where p(u) = infAx−b≤u f(x). 

• We have w∗ = p(0) = infAx−b≤0 f(x). 



� � 

NONL. FARKAS’ L. - POLYHEDRAL ASSUM.


• Let X ⊂ �n be convex, and f : X 
n

→ � and gj : 
 , j = 1, . . . , r, be linear so g(x) = Ax  b 

�
� �→ � −
for some A and b. Assume that 

f(x) ≥ 0, ∀ x ∈ X with Ax − b ≤ 0


Let 

Q∗ = μ | μ ≥ 0, f(x)+μ′(Ax−b) ≥ 0, ∀ x ∈ X . 

Assume that there exists a vector x ∈ ri(X) such

that Ax − b ≤ 0. Then Q∗ is nonempty. 

Proof: As before, apply special case of MC/MC 
Th. III of preceding slide, using the fact w ∗ ≥ 0, 
implied by the assumption. 

(μ, 1) 

0 u 

w 

(0, w  ∗) 

D 

M = 
� 
(u, w) | Ax − b ≤ u, for some (x, w) ∈ epi(f ) 

� 

� 
(Ax − b, f(x)) | x ∈ X 

� 



(LINEAR) FARKAS’ LEMMA
 

• Let A be an m × n matrix and c ∈ �m. The 
system Ay = c, y ≥ 0 has a solution if and only if 

A�x ≤ 0 ⇒ c�x ≤ 0. (∗) 

• Alternative/Equivalent Statement: If P = 
cone{a1, . . . , an}, where a1, . . . , an are the columns 
of A, then P = (P ∗)∗ (Polar Cone Theorem). 

Proof: If y ∈ �n is such that Ay = c, y ≥ 0, then 
y�A�x = c�x for all x ∈ �m, which implies Eq. (*). 

Conversely, apply the Nonlinear Farkas’ Lemma 
with f(x) = −c�x, g(x) = A�x, and X = �m. 
Condition (*) implies the existence of µ ≥ 0 such 
that 

,−c�x + µ�A�x ≥ 0, ∀ x ∈ �m 

or equivalently 

(Aµ − c)�x ≥ 0, ∀ x ∈ �m , 

or Aµ = c. 



LINEAR PROGRAMMING DUALITY
 

• Consider the linear program 

minimize c�x
 

subject to a�j x ≥ bj , j = 1, . . . , r,
 

where c ∈ �n, aj ∈ �n, and bj ∈ �, j = 1, . . . , r. 

• The dual problem is 

maximize b�µ 
r 

subject to 
� 

aj µj = c, µ ≥ 0. 
j=1 

• Linear Programming Duality Theorem:
 

(a) If either f∗ or q∗ is finite, then f∗ = q∗ and 
both the primal and the dual problem have 
optimal solutions. 

(b) If f∗ = −∞, then q∗ = −∞. 

(c) If q∗ = ∞, then f∗ = ∞. 

Proof: (b) and (c) follow from weak duality. For 
part (a): If f∗ is finite, there is a primal optimal 
solution x∗, by existence of solutions of quadratic 
programs. Use Farkas’ Lemma to construct a dual 
feasible µ∗ such that c�x∗ = b�µ∗ (next slide). 



PROOF OF LP DUALITY (CONTINUED)
 

Feasible Set

x∗

a1
a2

c = µ∗
1a1 + µ∗

2a2

Cone D (translated to x∗)

• Let x∗ be a primal optimal solution, and let 
J = {j | a�j x

∗ = bj }. Then, c�y ≥ 0 for all y in the 
cone of “feasible directions” 

D = {y | a�j y ≥ 0, ∀ j ∈ J} 

By Farkas’ Lemma, for some scalars µ∗j ≥ 0, c can 
be expressed as 

r 

c = 
� 

µj
∗aj , µ∗j ≥ 0, ∀ j ∈ J, µj

∗ = 0, ∀ j /∈ J. 
j=1 

Taking inner product with x∗, we obtain c�x∗ = 
b�µ∗, which in view of q∗ ≤ f∗, shows that q∗ = f∗ 

and that µ∗ is optimal. 



LINEAR PROGRAMMING OPT. CONDITIONS
 

A pair of vectors (x∗, µ∗) form a primal and dual 
optimal solution pair if and only if x  is primal-∗

feasible, µ∗ is dual-feasible, and 

µ∗j (bj − a�j x
∗) = 0, ∀ j = 1, . . . , r. (∗) 

Proof: If x∗ is primal-feasible and µ∗ is dual-
feasible, then 

⎞
⎠


⎛
⎝
+
 

j=1 j=1 

r 
(∗∗) 

= c�x∗ +
 µ∗j (bj − a�j x
∗)
 

j=1 

So if Eq. (*) holds, we have b�µ∗ = c�x∗, and weak 
duality implies that x∗ is primal optimal and µ∗ 

is dual optimal. 
Conversely, if (x∗, µ∗) form a primal and dual 

optimal solution pair, then x∗ is primal-feasible, 
µ∗ is dual-feasible, and by the duality theorem, we 
have b�µ∗ = c�x∗. From Eq. (**), we obtain Eq. 
(*). 

r
 r



c −
 
bj µ∗j
 aj µ∗j
b�µ∗
 x∗
=
 



LECTURE 12
 

LECTURE OUTLINE
 

•	 Convex Programming Duality 

•	 Optimality Conditions 

Mixtures of Linear and Convex Constraints • 

•	 Existence of Optimal Primal Solutions 

•	 Fenchel Duality 

•	 Conic Duality 

Reading: Sections 5.3.1-5.3.6 

Line of analysis so far: 

• Convex analysis (rel. int., dir. of recession, hy
perplanes, conjugacy) 

•	 MC/MC 

Nonlinear Farkas’ Lemma • 

•	 Linear programming (duality, opt. conditions)
 

• We now discuss convex programming, and its 
many special cases (reliance on Nonlinear Farkas’ 
Lemma) 



CONVEX PROGRAMMING
 

ider the problem Cons

minimize f(x) 
subject to x ∈ X, gj (x) ≤ 0, j = 1, . . . , r, 

where X ⊂ �n is convex, and f : X �→ � and 
gj : X �→ � are convex. Assume f∗: finite. 

• Recall the connection with the max crossing 
problem in the MC/MC framework where M = 
epi(p) with 

p(u) = inf f(x)
 
x∈X, g(x)≤u 

• Consider the Lagrangian function 

L(x, µ) = f(x) + µ�g(x), 

the dual function 
� 

infx∈X L(x, µ) if µ ≥ 0,
q(µ) = −∞ otherwise 

and the dual problem of maximizing infx∈X L(x, µ) 
over µ ≥ 0. 



STRONG DUALITY THEOREM
 


 Assume that f∗ is finite, and that one of the •

following two conditions holds:
 

(1) There exists x ∈ X such that g(x) < 0.
 

(2) The functions gj , j = 1, . . . , r, are affine, and 
there exists x ∈ ri(X) such that g(x) ≤ 0. 

Then q∗ = f∗ and the set of optimal solutions of 

• Replace f(x) by f(x) − f∗ 

the dual problem is nonempty. Under condition 
(1) this set is also compact. 

Proof: so that 
f(x) − f∗ ≥ 0 for all x ∈ X w/ g(x) ≤ 0. Ap
ply Nonlinear Farkas’ Lemma. Then, there exist 
µ∗j ≥ 0, s.t. 

r 

f∗ ≤ f(x) +
 µ∗j gj (x), ∀ x ∈ X
 
j=1
 

It follows that
•


f∗ ≤ inf 
�
f(x)+µ∗�g(x)

� 
≤ inf f(x) = f∗. 

x∈X x∈X, g(x)≤0 

Thus equality holds throughout, and we have
⎧
⎨ 

⎩

f(x) +
 

 

r


j=1


⎫
⎬ 

⎭

µ∗j gj (x)
 
 

= q(µ∗)
f∗
 =
 inf
 
x∈X
 



QUADRATIC PROGRAMMING DUALITY
 

• Consider the quadratic program 
1minimize
 2 x
�Qx + c�x
 

subject to Ax ≤ b, 

where Q is positive definite. 

• If f∗ is finite, then f∗ = q∗ and there exist 
both primal and dual optimal solutions, since the 
constraints are linear. 

Calculation of dual function: • 

q(µ) = inf 2 x
�Qx + c�x + µ�(Ax − b)}
 

x∈�n 
{ 1 

The infimum is attained for x = −Q−1(c + A�µ), 
and, after substitution and calculation, 

q(µ) = −
1
µ�AQ−1A�µ − µ�(b + AQ−1c) −
1
c�Q−1c
2
 2
 

• The dual problem, after a sign change, is
 
1minimize
 2 µ
�Pµ + t�µ
 

subject to µ ≥ 0, 

where P = AQ−1A� and t = b + AQ−1c. 



OPTIMALITY CONDITIONS
 

• We have q∗ = f∗, and the vectors x∗ and µ∗ are 
optimal solutions of the primal and dual problems, 
respectively, iff x∗ is feasible, µ∗ ≥ 0, and 

x∗ ∈ arg min L(x, µ∗), µ∗j gj (x∗) = 0, ∀ j. 
x∈X 

(1) 
Proof: If q∗ = f∗, and x∗, µ∗ are optimal, then 

f∗ = q∗ = q(µ∗) = inf L(x, µ∗) ≤ L(x∗, µ∗) 
x∈X 

r 

= f(x∗) + 
� 

µ∗j gj (x∗) ≤ f(x∗), 
j=1 

where the last inequality follows from µ∗j ≥ 0 and 
gj (x∗) ≤ 0 for all j. Hence equality holds through
out above, and (1) holds. 

Conversely, if x∗, µ∗ are feasible, and (1) holds, 

q(µ∗) = inf L(x, µ∗) = L(x∗, µ∗) 
x∈X 

r 

= f(x∗) + 
� 

µj
∗gj (x∗) = f(x∗), 

j=1 

so q∗ = f∗, and x∗, µ∗ are optimal. Q.E.D.
 



QUADRATIC PROGRAMMING OPT. COND.
 

For the quadratic program 
1minimize 2 x
�Qx + c�x 

subject to Ax ≤ b, 

where Q is positive definite, (x∗, µ∗) is a primal 
and dual optimal solution pair if and only if: 

• Primal and dual feasibility holds: 

Ax∗ ≤ b, µ∗ ≥ 0 

• Lagrangian optimality holds [x∗ minimizes L(x, µ∗) 
over x ∈ �n]. This yields 

x∗ = −Q−1(c + A�µ∗) 

• Complementary slackness holds [(Ax∗ −b)�µ∗ = 
0]. It can be written as 

µ∗j > 0 a�j x
∗ = bj , ∀ j = 1, . . . , r, ⇒ 

where a�j is the jth row of A, and bj is the jth 
component of b. 



LINEAR EQUALITY CONSTRAINTS
 

• The problem is 

minimize f(x)
 
subject to x ∈ X, g(x) ≤ 0, Ax = b,
 

where X is convex, g(x) = 
�
g1(x), . . . , gr(x)

��, f : 
X �→ � and gj : X �→ �, j = 1, . . . , r, are convex. 

• Convert the constraint Ax = b to Ax ≤ b 
and −Ax ≤ −b, with corresponding dual variables 
λ+ ≥ 0 and λ− ≥ 0. 

•	 The Lagrangian function is 

f(x) + µ�g(x) + (λ+ − λ−)�(Ax − b), 

and by introducing a dual variable λ = λ+ − λ−, 
with no sign restriction, it can be written as 

L(x, µ, λ) = f(x) + µ�g(x) + λ�(Ax − b). 

•	 The dual problem is 

maximize q(µ, λ) ≡ inf L(x, µ, λ)
 
x∈X 

subject to µ ≥ 0, λ ∈ �m . 



DUALITY AND OPTIMALITY COND.
 

• Pure equality constraints: 

(a) Assume that f∗: finite and there exists x ∈
ri(X) such that Ax = b. Then f∗ = q∗ and 
there exists a dual optimal solution. 

(b)	 f∗ = q∗, and (x∗, λ∗) are a primal and dual 
optimal solution pair if and only if x∗ is fea
sible, and 

x∗ ∈ arg min L(x, λ∗) 
x∈X 

Note: No complementary slackness for equality 
constraints. 

Linear and nonlinear constraints: • 

(a) Assume f∗: finite, that there exists x ∈ X 
such that Ax = b and g(x) < 0, and that 
there exists x̃ ∈ ri(X) such that Ax̃ = b. 
Then q∗ = f∗ and there exists a dual optimal 
solution. 

(b)	 f∗ = q∗, and (x∗, µ∗, λ∗) are a primal and 
dual optimal solution pair if and only if x∗ 

is feasible, µ∗ ≥ 0, and 

x∗ ∈ arg min L(x, µ∗, λ∗), µj
∗gj (x∗) = 0, ∀ j 

x∈X 



COUNTEREXAMPLE I
 

g Duality Counterexample: Consider
 • Stron

minimize f(x) = e−
√

x1x2 

subject to x1 = 0, x ∈ X = {x | x ≥ 0} 

Here f∗ = 1 and f is convex (its Hessian is > 0 in 
the interior of X). The dual function is 

q(λ) = inf 
�
e−
√

x1x2 + λx1

� 
= 

� 
0 if λ ≥ 0, 

x≥0 −∞ otherwise, 

(when λ ≥ 0, the expression in braces is nonneg
ative for x ≥ 0 and can approach zero by taking 
x1 0 and x1x2 →∞). Thus q∗ = 0. → 

• The relative interior assumption is violated. 

• As predicted by the corresponding MC/MC 
framework, the perturbation function 

� 0 if u > 0, 
p(u) = inf e−

√
x1x2 = 1 if u = 0, 

x1=u, x≥0 if u < 0,∞ 

is not lower semicontinuous at u = 0. 



� 

COUNTEREXAMPLE VISUALIZATION


0 if  u > 0,√ 
p(u) =  inf  e− x1x2 = 1 if  u = 0,  

x1=u, x≥0 ∞ if u < 0, 

1 

0.8 

√ 
0.6 e− x1x2 

0.4 

0.2 

0 20 
0

5 15 
10 10 

15 5 
20 0 x2 

x1 = u 

• Connection with counterexample for preserva
tion of closedness under partial minimization. 



COUNTEREXAMPLE II
 

• Existence of Solutions Counterexample: 
Let X = �, f(x) = x, g(x) = x2 . Then x∗ = 0 is 
the only feasible/optimal solution, and we have 

1 
q(µ) = inf } = − , ∀ µ > 0,
 

x∈�
{x + µx2 

4µ 

and q(µ) = −∞ for µ ≤ 0, so that q∗ = f∗ = 0. 
However, there is no µ∗ ≥ 0 such that q(µ∗) = 
q∗ = 0. 

• The perturbation function is 

� 
−√u if u ≥ 0,p(u) = inf x = 

x2≤u ∞ if u < 0. 

u

p(u)

0

epi(p)



FENCHEL DUALITY FRAMEWORK 

• Consider the problem 

minimize f1(x) + f2(x) 
subject to ,x ∈ �n 

where f1 : �n �→ (−∞, ∞] and f2 : �n �→ (−∞, ∞] 
are closed proper convex functions. 

• Convert to the equivalent problem 

minimize f1(x1) + f2(x2) 
subject to x1 = x2, x1 ∈ dom(f1), x2 ∈ dom(f2) 

The dual function is • 

q(λ) = inf 
�
f1(x1) + f2(x2) + λ�(x2 − x1) 

x1∈dom(f1), x2∈dom(f2) 

= inf 
�
f1(x1) − λ�x1

� 
+ inf 

�
f2(x2) + λ�x2

� 
x1∈�n x2∈�n 

• Dual problem: maxλ{−f1 
�(λ) − f2 

�(−λ)} = 
− minλ{−q(λ)} or 

minimize f1 
�(λ) + f2 

�(−λ) 
subject to ,λ ∈ �n 

where f1 
� and f2 

� are the conjugates. 



FENCHEL DUALITY THEOREM 

Consider the Fenchel framework: • 

(a) If f∗ is finite and ri
�
dom(f1)

�
∩ri

�
dom(f2)

� 
=
�


Ø, then f∗ = q∗ and there exists at least one
 
dual optimal solution.
 

(b) There holds f∗ = q∗, and (x∗, λ∗) is a primal
 
and dual optimal solution pair if and only if
 

x∗ ∈ arg min 
�
f1(x)−x�λ∗

�
, x∗ ∈ arg min 

�
f2(x)+x�λ∗

� 
x∈�n x∈�n 

Proof: For strong duality use the equality con
strained problem 

minimize f1(x1) + f2(x2) 
subject to x1 = x2, x1 ∈ dom(f1), x2 ∈ dom(f2) 

and the fact 

ri
�
dom(f1)×dom(f2)

� 
= ri

�
dom(f1)

� �
dom(f2)

�
× 

to satisfy the relative interior condition. 
For part (b), apply the optimality conditions 

(primal and dual feasibility, and Lagrangian opti
mality). 



GEOMETRIC INTERPRETATION
 

f1(x)
Slope λ∗

Slope λ

x∗ x

−f2(x)

q(λ)

f∗ = q∗

−f!
1 (λ)

f!
2 (−λ)

• When dom(f1) = dom(f2) = �n, and f1 and 
f2 are differentiable, the optimality condition is 
equivalent to 

λ∗ = �f1(x∗) = −�f2(x∗) 

• By reversing the roles of the (symmetric) primal 
and dual problems, we obtain alternative criteria 
for strong duality: if q∗ is finite and ri

�
dom(f1 

�)
�
∩

ri
�
−dom(f�)

� 
=� Ø, then f∗ = q∗ and there exists 2 

at least one primal optimal solution. 



• A co
tion f � �

CONIC PROBLEMS
 

nic problem is to minimize a convex func
: n  ( , ] subject to a cone con→ −∞ ∞

straint. 

•	 The most useful/popular special cases: 
− Linear-conic programming 

− Second order cone programming 

− Semidefinite programming 

involve minimization of a linear function over the 
intersection of an affine set and a cone. 

• Can be analyzed as a special case of Fenchel 
duality. 

• There are many interesting applications of conic 
problems, including in discrete optimization. 



CONIC DUALITY
 

r minimizing f(x) over x  C, where f : • Conside ∈
�n �→ (−∞, ∞] is a closed proper convex function 
and C is a closed convex cone in �n. 

• We apply Fenchel duality with the definitions 

f1(x) = f(x), f2(x) = 
� 0 

if
if 
x / 
x ∈ C, 

∞ ∈ C. 

The conjugates are 

f1 
�(λ) = sup 

�
λ�x−f(x)

�
, f2 

�(λ) = sup λ�x = 
� 

0 if λ ∈ C∗, 

x∈�n	 
x∈C 

∞ if λ /∈ C∗, 

where C∗ = {λ	| λ�x ≤ 0, ∀ x ∈ C}. 
• The dual problem is 

minimize	 f�(λ) 
ˆsubject to λ ∈ C, 

where f� is the conjugate of f and 

Ĉ = {λ | λ�x ≥ 0, ∀ x ∈ C}. 

Ĉ and −Ĉ are called the dual and polar cones. 



� 

� 

CONIC DUALITY THEOREM
 

 Assume that the optimal value of the primal 
onic problem is finite, and that 
•
c

ri
�
dom(f)

� 
∩ ri(C) = Ø.
 

Then, there is no duality gap and the dual problem 
has an optimal solution. 

• Using the symmetry of the primal and dual 
problems, we also obtain that there is no duality 
gap and the primal problem has an optimal solu
tion if the optimal value of the dual conic problem 
is finite, and 

ri
�
dom(f�)

� 
∩ ri(Ĉ) = Ø. 



LINEAR CONIC PROGRAMMING
 

• Let f be linear over its domain, i.e., 

� 
c�x if x ∈ X,

f(x) = ∞ if x /∈ X, 

where c is a vector, and X = b + S is an affine set.
 

• Primal problem is 

minimize c�x
 

subject to x − b ∈ S, x ∈ C.
 

We have
• 

f�(λ) = sup (λ − c)�x = sup(λ − c)�(y + b) 
x−b∈S	 y∈S � 

(λ − c)�b if λ − c ∈ S⊥,= ∞	 if λ − c /∈ S.
 

• Dual problem is equivalent to 

minimize	 b�λ 

ˆsubject to λ − c ∈ S⊥, λ ∈	C. 

• If X ∩ ri(C) = Ø, there is no duality gap and 
there exists a dual optimal solution. 



ANOTHER APPROACH TO DUALITY
 

• Consider the problem 

minimize f(x) 
subject to x ∈ X, gj (x) ≤ 0, j = 1, . . . , r 

and perturbation fn p(u) = infx∈X, g(x)≤u f(x) 

• Recall the MC/MC framework with M = epi(p). 
Assuming that p is convex and f∗ < ∞, by 1st 
MC/MC theorem, we have f∗ = q∗ if and only if 
p is lower semicontinuous at 0. 

• Duality Theorem: Assume that X, f , and gj 

are closed convex, and the feasible set is nonempty 
and compact. Then f∗ = q∗ and the set of optimal 
primal solutions is nonempty and compact. 

Proof: Use partial minimization theory w/ the 
function 

F (x, u) = 
� 
f(x) if x ∈ X, g(x) ≤ u, 
∞ otherwise. 

p is obtained by the partial minimization: 

p(u) = inf F (x, u). 
x∈�n 

Under the given assumption, p is closed convex.
 



LECTURE 13 

LECTURE OUTLINE 

•	 Subgradients 

•	 Fenchel inequality 

•	 Sensitivity in constrained optimization 

Subdifferential calculus • 

•	 Optimality conditions 



• Let f : �n �

SUBGRADIENTS
 

→ (−∞, ∞] be a convex function. 
A vector g ∈ �n is a subgradient of f at a point 
x ∈ dom(f) if 

f(z) ≥ f(x) + (z − x)�g, ∀ z ∈ �n 

•	 g is a subgradient if and only if 

f(z) − z�g ≥ f(x) − x�g, ∀ z ∈ �n 

so g is a subgradient at x if and only if the hyper
plane in �n+1 that has normal (−g, 1) and passes 
through 

�
x, f(x)

� 
supports the epigraph of f . 

0

(−g, 1)

(
x, f(x)

)

z

• The set of all subgradients at x is the subdiffer
ential of f at x, denoted ∂f(x). 



EXAMPLES OF SUBDIFFERENTIALS
 

• Some examples: 

∂f(x)

∂f(x)

0 x x

xx

f(x) = max
{
0, (1/2)(x2 − 1)

}

f(x) = |x|

1

1

1-1

-1

-10

0

0

• If f is differentiable, then ∂f(x) = {�f(x)}. 
Proof: If g ∈ ∂f(x), then 

f(x + z) ≥ f(x) + g�z, ∀ z ∈ �n. 

Apply this with z = γ
�
�f(x)−g

�
, γ ∈ �, and use 

1st order Taylor series expansion to obtain 

γ��f(x) − g�2 ≥ o(γ), ∀ γ ∈ �
 



EXISTENCE OF SUBGRADIENTS 

•	 Note the connection with MC/MC 

M = epi(fx), fx(z) = f(x + z) − f(x) 

0

(−g, 1)

f(z)

(
x, f(x)

)

z

0
z

(−g, 1)
Epigraph of fEpigraph of f
Translated

fx(z)

• Let f : �n �→ (−∞, ∞] be a proper convex 
function. For every x ∈ ri

�
dom(f)), 

∂f(x) = S⊥ + G, 

where: 
− S is the subspace that is parallel to the affine 

hull of dom(f) 
− G is a nonempty and compact set. 

• Furthermore, ∂f(x) is nonempty and compact 
if and only if x is in the interior of dom(f). 



{ } 

EXAMPLE: SUBDIFFERENTIAL OF INDICATOR


• Let C be a convex set, and δC be its indicator 
function. 

• For x /∈ C, ∂δC (x) =  Ø, by convention. 

• For x ∈ C, we have  g ∈ ∂δC (x) iff  

δC (z) ≥ δC (x) +  g′(z − x), ∀ z ∈ C, 

or equivalently g′(z − x) ≤ 0 for all z ∈ C. Thus  
∂δC (x) is the normal cone of C at x, denoted 
NC (x): 

NC (x) =  g | g′(z − x) ≤ 0, ∀ z ∈ C . 

C 

NC (x) 

x C 

NC (x) 

x 



{ ( )


EXAMPLE: POLYHEDRAL CASE


NC (x) 

C 

a1 

a2 

x 

• For the case of a polyhedral set 

C = {x | ai 
′ x ≤ bi, i = 1, . . . , m}, 

we have 

0 if x ∈ 
NC (x) =  

{ } 
′ 

int(C), 
cone {ai | aix = bi} if x /∈ int(C). 



FENCHEL INEQUALITY


• Let f : � � ,∞] be proper convex and
n → (−∞
let f� be its conjugate. Using the definition of 
conjugacy, we have Fenchel’s inequality : 

nx′y ≤ f(x) +  f�(y), ∀ x ∈ �n, y  ∈ � . 

• Conjugate Subgradient Theorem: The fol
lowing two relations are equivalent for a pair of 
vectors (x, y): 

(i) x′y = f(x) +  f�(y). 

(ii) y ∈ ∂f(x). 

If f is closed, (i) and (ii) are equivalent to 

(iii) x ∈ ∂f�(y). 

f(x) 

Epigraph of f 

0 x 0 y 
(−y, 1) 

(−x, 1) 

f(x)

x y0 0

i hEp grap of f

(−x, 1)
(−y, 1) 

f�(y) 

Epigraph of f� 

∂f�(y) ∂f(x) 



MINIMA OF CONVEX FUNCTIONS
 

Application: Let f be closed proper convex • 
and let X∗ be the set of minima of f over �n. 
Then: 

(a)	 X∗ = ∂f�(0). 

(b)	 X∗ is nonempty if 0 ∈ ri
�
dom(f�)

�
. 

(c)	 X∗ is nonempty and compact if and only if 
0 ∈ int

�
dom(f�)

�
. 

Proof: (a) From the subgradient inequality, 

x∗ minimizes f iff 0 ∈ ∂f(x∗), 

and since 

0 ∈ ∂f(x∗) iff x∗ ∈ ∂f�(0), 

we have 

x∗ minimizes f iff x∗ ∈ ∂f�(0), 

(b)	∂f�(0) is nonempty if 0 ∈ ri
�
dom(f�)

�
. 

(c) ∂f�(0) is nonempty and compact if and only 
if 0 ∈ int

�
dom(f�)

�
. Q.E.D. 



SENSITIVITY INTERPRETATION
 

•	 Consider MC/MC for the case M = epi(p). 

Dual function is • 

q(µ) = inf 
�
p(u) + µ�u

� 
= −p�(−µ), 

m u∈� 

where p� is the conjugate of p. 

• Assume p is proper convex and strong duality 
holds, so p(0) = w∗ = q∗ = sup 

� 
− p�(−µ)

�
.µ∈�m 

Let Q∗ be the set of dual optimal solutions, 

Q∗ = 
�
µ∗ | p(0) + p�(−µ∗) = 0

�
. 

From Conjugate Subgradient Theorem, µ∗ ∈ Q∗ 

if and only if −µ∗ ∈ ∂p(0), i.e., Q∗ = −∂p(0). 

• If p is convex and differentiable at 0, −�p(0) is 
equal to the unique dual optimal solution µ∗. 

•	 Constrained optimization example 

p(u) = inf f(x), 
x∈X, g(x)≤u 

If	p is convex and differentiable, 

∂p(0) 
µ∗j = − 

∂uj 
, j = 1, . . . , r. 



EXAMPLE: SUBDIFF. OF SUPPORT FUNCTION



• Consider the support function σX (y) of a set 
X. To calculate ∂σX (y) at some y, we introduce 

r(y) = σX (y + y), .y ∈ �n 

• We have ∂σX (y) = ∂r(0) = arg minx∈�n r�(x). 

• We have r�(x) = supy∈�n {y�x − r(y)}, or 

r�(x) = sup 
y∈�n

{y�x − σX (y + y)} = δ(x) − y�x, 

where δ is the indicator function of cl
�
conv(X)

�
.
 

• Hence ∂σX (y) = arg minx∈�n δ(x) − y�x, or 

∂σX (y) = arg max 
x∈cl

�
conv(X)

� y
�x 

0

y1

y2

X

∂σX(y2)

∂σX(y1)



EXAMPLE: SUBDIFF. OF POLYHEDRAL FN
 

Let• 

f(x) = max{a�1x + b1, . . . , a�rx + br}. 

• For a fixed x ∈ �n, consider 

Ax = 
�
j | a�j x + bj = f(x)

�
 

and the function r(x) = max
�
a�j x | j ∈ Ax

�
.
 

f(x)

x0

Epigraph of f

(−g, 1)

x x0

(−g, 1)
r(x)

• It can be seen that ∂f(x) = ∂r(0). 

• Since r is the support function of the finite set 
{aj | j ∈ Ax}, we see that 

∂f(x) = ∂r(0) = conv
�
{aj | j ∈ Ax}

� 



� 

� 

CHAIN RULE
 

• Let f : �m �→ (−∞, ∞] be convex, and A be a 
matrix. Consider F (x) = f(Ax) and assume that 
F is proper. If either f is polyhedral or else the 
range of R(A) ∩ ri(dom(f)) = Ø, we have 

∂F (x) = A�∂f(Ax), ∀ x ∈ �n . 

Proof: Showing ∂F (x) ⊃ A�∂f(Ax) is simple and 
does not require the relative interior assumption. 
For the reverse inclusion, let d ∈ ∂F (x) so F (z) ≥
F (x)+(z − x)�d ≥ 0 or f(Az) − z�d ≥ f(Ax) − x�d 
for all z, so (Ax, x) solves 

minimize f(y) − z�d 

subject to y ∈ dom(f), Az = y.


If R(A) ∩ ri(dom(f)) = Ø, by strong duality theo

rem, there is a dual optimal solution λ, such that


(Ax, x) ∈ arg min 
�
f(y) − z�d + λ�(Az − y)

� 

y∈�m, z∈�n 

Since the min over z is unconstrained, we have 
d = A�λ, so Ax ∈ arg miny∈�m 

�
f(y) − λ�y

�
, or 

f(y) ≥ f(Ax) + λ�(y − Ax), ∀ y ∈ �m. 

Hence λ ∈ ∂f(Ax), so that d = A�λ ∈ A�∂f(Ax). 
It follows that ∂F (x) ⊂ A�∂f(Ax). In the polyhe
dral case, dom(f) is polyhedral. Q.E.D. 



SUM OF FUNCTIONS
 

• Let fi : �n �→ (−∞, ∞], i = 1, . . . ,m, be proper 
convex functions, and let 

F = f1 + + fm.· · · 

Assume that ∩m ri
�
dom(fi)

� 
= Ø.1=1 

Then• 

∂F (x) = ∂f1(x) + + ∂fm(x), .· · · ∀ x ∈ �n 

Proof: We can write F in the form F (x) = f(Ax), 
where A is the matrix defined by Ax = (x, . . . , x), 
and f : �mn �→ (−∞, ∞] is the function 

f(x1, . . . , xm) = f1(x1) + + fm(xm).· · · 

Use the proof of the chain rule. 

Extension: If for some k, the functions fi, i = • 
1, . . . , k, are polyhedral, it is sufficient to assume
 

� 
k
i=1 dom(fi)

� � 
∩m

i=k+1 ri
�
dom(fi)

�� 
= Ø.∩ ∩ � 



�


• � �

CONSTRAINED OPTIMALITY CONDITION
 

 Let f : n  ( , ] be proper convex, let X → −∞ ∞
be a convex subset of �n, and assume that one of 
the following four conditions holds: 

(i) ri
�
dom(f)

� 
∩ ri(X) = Ø. 

(ii) f is polyhedral and dom(f) ∩ ri(X) = Ø. 

(iii) X is polyhedral and ri
�
dom(f)

� 
∩ X 

� 
=� Ø.
 

(iv) f and X are polyhedral, and dom(f) ∩ X =� Ø. 

Then, a vector x∗ minimizes f over X iff there 
exists g ∈ ∂f(x∗) such that −g belongs to the 
normal cone NX (x∗), i.e., 

g�(x − x∗) ≥ 0, ∀ x ∈ X. 

Proof: x∗ minimizes 

F (x) = f(x) + δX (x) 

if and only if 0 ∈ ∂F (x∗). Use the formula for 
subdifferential of sum. Q.E.D. 



LLUSTRATION OF OPTIMALITY CONDITION


Level Sets of f 

x ∗ 

∇f(x ∗) 

Level Sets of f 

x ∗ 

NC (x ∗) 
NC (x ∗) 

C C 
g 

∂f(x ∗) 

• In the figure on the left, f is differentiable and 
the condition is that 

−∇f(x ∗) ∈ NC (x ∗), 

which is equivalent to 

∇f(x ∗)′(x − x ∗) ≥ 0, ∀ x ∈ X. 

• In the figure on the right, f is nondifferentiable, 
and the condition is that 

−g ∈ NC (x ∗) for some g ∈ ∂f(x ∗). 



LECTURE 14
 

LECTURE OUTLINE
 

•	 Min-Max Duality 

Existence of Saddle Points • 

−−−−−−−−−−−−−−−−−−−−−−−−−−−− 

Given φ : X × Z �→ �, where X ⊂ �n, Z ⊂ �m 

consider 
minimize sup φ(x, z)
 

z∈Z 

subject to x ∈ X 

and 
maximize inf φ(x, z)
 

x∈X 

subject to z ∈ Z. 



REVIEW
 

•	 Minimax inequality (holds always)
 

sup inf φ(x, z) ≤ inf sup φ(x, z)
 
z∈Z x∈X	 x∈X z∈Z 

Important issue is whether minimax equality holds.
 

• Definition: (x∗, z∗) is called a saddle point of 
φ if 

φ(x∗, z) ≤ φ(x∗, z∗) ≤ φ(x, z∗), ∀ x ∈ X, ∀ z ∈ Z 

• Proposition: (x∗, z∗) is a saddle point if and 
only if the minimax equality holds and 

x∗ ∈ arg min sup φ(x, z), z∗ ∈ arg max inf φ(x, z) 
x∈X z∈Z	 z∈Z x∈X 

•	 Connection w/ constrained optimization: 
− Strong duality is equivalent to 

inf sup L(x, µ) = sup inf L(x, µ)
 
x∈X µ≥0	 µ≥0 x∈X 

where L is the Lagrangian function. 
−	 Optimal primal-dual solution pairs (x∗, µ∗) 

are the saddle points of L. 



MC/MC FRAMEWORK FOR MINIMAX
 

• Use MC/MC with M = epi(p) where p : �m �→
[−∞, ∞] is the perturbation function 

p(u) = inf sup
�
φ(x, z) − u�z

�
, 

x∈X z∈Z 
u ∈ �m 

• Important fact: p is obtained by partial min.
 

• Note that w∗ = p(0) = inf sup φ and φ(·, z): 
convex for all z implies that M is convex. 

• If −φ(x, ·) is closed and convex, the dual func
tion in MC/MC is 

q(z) = inf φ(x, z), q∗ = sup inf φ 
x∈X 

u

w

(µ, 1)

q(µ)

M = epi(p)

0

w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

q∗ = sup
z∈Z

inf
x∈X

φ(x, z)

(µ, 1)

q(µ)

u

w

0

M = epi(p)

w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

q∗ = sup
z∈Z

inf
x∈X

φ(x, z)



MINIMAX THEOREM I 

 that: 

and Z are convex. 

Assume

(1) X 

(2) p(0) = infx∈X supz∈Z φ(x, z) < ∞. 

(3) For each z ∈ Z, the function φ( , z) is convex.
· 
(4) For each x ∈ X, the function −φ(x, ) : Z �→
· 

� is closed and convex. 

Then, the minimax equality holds if and only if
 
the function p is lower semicontinuous at u = 0.
 

Proof: The convexity/concavity assumptions guar
antee that the minimax equality is equivalent to 
q∗ = w∗ in the min common/max crossing frame
work. Furthermore, w∗ < ∞ by assumption, and 
the set M [equal to M and epi(p)] is convex. 

By the 1st Min Common/Max Crossing The
orem, we have w∗ = q∗ iff for every sequence �
(uk, wk)

� 
⊂ M with uk → 0, there holds w∗ ≤

lim infk→∞ wk. This is equivalent to the lower 
semicontinuity assumption on p: 

p(0) ≤ lim inf p(uk), for all {uk} with uk 
0
 
k→∞ 

→



MINIMAX THEOREM II
 

ssume that: 

(1) X and Z are convex. 

(2) p(0) = infx∈X supz∈Z φ(x, z) > −∞. 

A

(3) For each z ∈ Z, the function φ( , z) is convex.
· 
(4) For each x ∈ X, the function −φ(x, ) : Z �→
· 

� is closed and convex. 

(5) 0 lies in the relative interior of dom(p). 

Then, the minimax equality holds and the supre
mum in supz∈Z infx∈X φ(x, z) is attained by some 
z ∈ Z. [Also the set of z where the sup is attained 
is compact if 0 is in the interior of dom(p).] 

Proof: Apply the 2nd Min Common/Max Cross
ing Theorem. 

• Counterexamples of strong duality and exis
tence of solutions/saddle points can be constructed 
from corresponding constrained min examples. 



EXAMPLE I
 

 
= (x1, x2)  x  0 and Z = z  • Let X 

�
| ≥

�
{ ∈ � |

z ≥ 0}, and let 
φ(x, z) = e−

√
x1x2 + zx1, 

which satisfy the convexity and closedness assump
tions. For all z ≥ 0, 

inf 
�
e−
√

x1x2 + zx1

� 
= 0, 

x≥0 

so supz≥0 infx≥0 φ(x, z) = 0. Also, for all x ≥ 0, 

sup 
�
e−
√

x1x2 + zx1

� 
= 

� 
1 if x1 = 0, 

z≥0 ∞ if x1 > 0, 

so infx≥0 supz≥0 φ(x, z) = 1. 

Here• 

p(u) = inf sup 
�
e−
√

x1x2 + z(x1 − u)
� 

x≥0 z≥0 

epi(p)

u

p(u)

1

0



EXAMPLE II
 

 , Z = z   z  0 , and let •	 Let X = � { ∈ � | ≥ }
φ(x, z) = x + zx2 , 

which satisfy the convexity and closedness assump
tions. For all z ≥ 0, 

� 
−1/(4z) if z > 0,inf 

x∈� 
{x + zx2} = −∞ if z = 0, 

so supz≥0 infx∈� φ(x, z) = 0. Also, for all x ∈ �, 

� 
0 if x = 0, 

z≥0 
{x + zx2sup	 } = ∞ otherwise,
 

so infx∈� supz≥0 φ(x, z) = 0. However, the sup is 
not attained, i.e., there is no saddle point. 

Here• 

p(u) = inf sup − uz}
z≥0

{x + zx2 
x∈�
� 
−√u if u ≥	0,= ∞ if u < 0. 



SADDLE POINT ANALYSIS
 

• The preceding analysis indicates the importance 
of the perturbation function 

p(u) = inf F (x, u),
 
x∈�n 

where 

F (x, u) = 

� 
supz∈Z 

�
φ(x, z) − u�z

� 
if x ∈ X, 

∞ if x /∈ X. 

It suggests a two-step process to establish the min
 
imax equality and the existence of a saddle point:
 

(1)	 Show that p is closed and convex, thereby 
showing that the minimax equality holds by 
using the first minimax theorem. 

(2)	 Verify that the inf of supz∈Z φ(x, z) over 
x ∈ X, and the sup of infx∈X φ(x, z) over 
z ∈ Z are attained, thereby showing that 
the set of saddle points is nonempty. 



SADDLE POINT ANALYSIS (CONTINUED)
 

• Step (1) requires two types of assumptions: 

(a) Convexity/concavity/semicontinuity conditions 
of Minimax Theorem I (so the MC/MC frame
work applies). 

(b) Conditions for preservation of closedness by 
the partial minimization in 

p(u) = inf F (x, u) 
x∈�n 

e.g., for some u, the nonempty level sets
 

�
x | F (x, u) ≤ γ

� 

are compact. 

• Step (2) requires that either Weierstrass’ The
orem can be applied, or else one of the conditions 
for existence of optimal solutions developed so far 
is satisfied. 



CLASSICAL SADDLE POINT THEOREM
 

• Assume convexity/concavity/semicontinuity of
 
φ and that X and Z are compact. Then the set
 
of saddle points is nonempty and compact.
 

• Proof: F is convex and closed by the convex
 
ity/concavity/semicontinuity of φ, so p is also con
 
vex. Using the compactness of Z, F is real-valued
 
over X × �m, and from the compactness of X,
 
it follows that p is also real-valued and therefore
 
continuous. Hence, the minimax equality holds by
 
the first minimax theorem.
 

The function supz∈Z φ(x, z) is equal to F (x, 0), 
so it is closed, and the set of its minima over x ∈ X 
is nonempty and compact by Weierstrass’ Theo
rem. Similarly the set of maxima of the function 
infx∈X φ(x, z) over z ∈ Z is nonempty and com
pact. Hence the set of saddle points is nonempty 
and compact. Q.E.D. 



ANOTHER THEOREM
 

• Use the theory of preservation of closedness 
under partial minimization. 

• Assume convexity/concavity/semicontinuity of 
φ. Consider the functions 

t(x) = F (x, 0) = 

� 
supz∈Z φ(x, z) 

if
if 
x / 
x ∈ X, 

∞ ∈ X, 

and 

r(z) = 
� − infx∈X φ(x, z) if z ∈ Z, 
∞ if z /∈ Z. 

• If the level sets of t are compact, the minimax 
equality holds, and the min over x of 

sup φ(x, z)
 
z∈Z 

[which is t(x)] is attained. (Take u = 0 in the 
partial min theorem to show that p is closed.) 

• If the level sets of t and r are compact, the set 
of saddle points is nonempty and compact. 

• Various extensions: Use conditions for preser
 
vation of closedness under partial minimization.
 



SADDLE POINT THEOREM
 

ssume the convexity/concavity/semicontinuity conA
ditions, and that any one of the following holds: 

(1)	 X and Z are compact. 

(2)	 Z is compact and there exists a vector z ∈ Z
 
and a scalar γ such that the level set 

�
x ∈
 

X | φ(x, z) ≤ γ
� 

is nonempty and compact.
 

(3)	 X is compact and there exists a vector x ∈ X
 
and a scalar γ such that the level set 

�
z ∈
 

Z | φ(x, z) ≥ γ
� 

is nonempty and compact.
 

(4) There exist vectors x ∈ X and z ∈ Z, and a
 
scalar γ such that the level sets
 

�
x ∈ X | φ(x, z) ≤ γ

�
, 

�
z ∈ Z | φ(x, z) ≥ γ

�
, 

are nonempty and compact. 

Then, the minimax equality holds, and the set of 
saddle points of φ is nonempty and compact. 



LECTURE 15 

LECTURE OUTLINE 

Problem Structures • 

− Separable problems 
− Integer/discrete problems – Branch-and-bound 

− Large sum problems 
− Problems with many constraints 

•	 Conic Programming 

− Second Order Cone Programming 

− Semidefinite Programming 



SEPARABLE PROBLEMS 

• Consider the problem 

m

minimize
 
� 

fi(xi)
 
i=1


m


s. t.
 
� 

gji(xi) ≤ 0, j = 1, . . . , r,
 xi ∈ Xi, ∀ i
 
i=1 

where fi : �ni �→ � and gji : �ni �→ � are given 
functions, and Xi are given subsets of �ni . 

• Form the dual problem
 

m m r


maximize
 inf fi(xi) +
qi(µ) ≡
 
xi∈Xi
 

µj gji(xi)
 
i=1 i=1 j=1 

subject to µ ≥ 0 

• Important point: The calculation of the dual 
function has been decomposed into n simpler 
minimizations. Moreover, the calculation of dual 
subgradients is a byproduct of these mini
mizations (this will be discussed later) 

• Another important point: If Xi is a discrete 
set (e.g., Xi = {0, 1}), the dual optimal value is 
a lower bound to the optimal primal value. It is 
still useful in a branch-and-bound scheme. 



LARGE SUM PROBLEMS 

Consider cost function of the form • 
m 

f(x) = 
� 

fi(x), m is very large, 
i=1 

where fi : �n �→ � are convex. Some examples: 

• Dual cost of a separable problem. 

• Data analysis/machine learning: x is pa
rameter vector of a model; each fi corresponds to 
error between data and output of the model. 
− Least squares problems (fi quadratic). 
− �1-regularization (least squares plus �1 penalty): 

m n 

min 
�

(a�j x − bj )2 + γ 
� 

xi 
x 

| |
j=1 i=1 

The nondifferentiable penalty tends to set a large 
number of components of x to 0. 

Min of an expected value E
�
F (x, w)

�
, where
• 

w is a random variable taking a finite but very 
large number of values wi, i = 1, . . . ,m, with cor
responding probabilities πi. 

• Stochastic programming: 

min 

� 

F1(x) + Ew{min F2(x, y, w)
�� 

x y 

• Special methods, called incremental apply.
 



PROBLEMS WITH MANY CONSTRAINTS
 

Problems of the form • 

minimize f(x)
 
subject to a�j x ≤ bj , j = 1, . . . , r,
 

where r: very large. 

• One possibility is a penalty function approach: 
Replace problem with 

r 

min f(x) + c 
� 

P (a�j x − bj ) 
x∈�n 

j=1 

where P ( ) is a scalar penalty function satisfying
· 
P (t) = 0 if t ≤ 0, and P (t) > 0 if t > 0, and c is a
 
positive penalty parameter. 

• Examples: 

− The quadratic penalty P (t) = 
�
max{0, t}

�2 
. 

− The nondifferentiable penalty P (t) = max{0, t}. 
• Another possibility: Initially discard some of 
the constraints, solve a less constrained problem, 
and later reintroduce constraints that seem to be 
violated at the optimum (outer approximation). 

• Also inner approximation of the constraint set.
 



CONIC PROBLEMS
 

• A conic problem is to minimize a convex func
tion f : �n �→ (−∞, ∞] subject to a cone con
straint. 

•	 The most useful/popular special cases: 
− Linear-conic programming 

− Second order cone programming 

− Semidefinite programming 

involve minimization of a linear function over the 
intersection of an affine set and a cone. 

• Can be analyzed as a special case of Fenchel 
duality. 

• There are many interesting applications of conic 
problems, including in discrete optimization. 



PROBLEM RANKING IN
 

ASING PRACTICAL DIFFICULTY
 INCRE

•	 Linear and (convex) quadratic programming.
 
− Favorable special cases.
 

•	 Second order cone programming. 

•	 Semidefinite programming. 

•	 Convex programming.
 
− Favorable special cases.
 
− Geometric programming.
 
− Quasi-convex programming.
 

•	 Nonlinear/nonconvex/continuous programming. 
− Favorable special cases. 
− Unconstrained. 
− Constrained. 

•	 Discrete optimization/Integer programming
 

− Favorable special cases.
 



CONIC DUALITY
 

• Consider minimizing f(x) over x ∈ C, where f : 
�n �→ (−∞, ∞] is a closed proper convex function 
and C is a closed convex cone in �n. 

• We apply Fenchel duality with the definitions 

f1(x) = f(x), f2(x) = 
� 0 if x ∈ C, 
∞ if x /∈ C. 

The conjugates are 

� 
0 if λ ∈ C∗,

f1 
�(λ) = sup 

�
λ�x−f(x)

�
, f2 

�(λ) = sup λ�x = 
if λ /∈ C∗,x∈�n 

x∈C 
∞ 

where C∗ = {λ | λ�x ≤ 0, ∀ x ∈ C} is the polar 
cone of C. 

• The dual problem is 

minimize	 f�(λ) 
ˆsubject to λ ∈ C, 

where f� is the conjugate of f and 

Ĉ = {λ | λ�x ≥ 0, ∀ x ∈ C}. 

Ĉ = −C∗ is called the dual cone. 



LINEAR-CONIC PROBLEMS
 

• Let f be affine, f(x) = c�x, with dom(f) be
ing an affine set, dom(f) = b + S, where S is a 
subspace. 

•	 The primal problem is 

minimize c�x
 

subject to x − b ∈ S, x ∈ C.
 

•	 The conjugate is 

f�(λ) = sup (λ − c)�x = sup(λ − c)�(y + b) 
x−b∈S	 y∈S � 

(λ − c)�b if λ − c ∈ S⊥,= ∞ if λ − c /∈ S⊥, 

so the dual problem can be written as 

minimize b�λ 

subject to λ − c ∈ S⊥, λ ∈ Ĉ. 

•	 The primal and dual have the same form. 

• If C is closed, the dual of the dual yields the 
primal. 



SPECIAL LINEAR-CONIC FORMS
 

min c�x	  max b�λ, 
Ax=b, x∈C	 

⇐⇒
c−A�λ∈Ĉ 

min c�x	 max b�λ, 
Ax−b∈C	 

⇐⇒ 
A�λ=c, λ∈Ĉ 

where x ∈ �n, λ ∈ �m, c ∈ �n, b ∈ �m, A : m×n. 

For the first relation, let x be such that Ax = b,• 
and write the problem on the left as 

minimize c�x 

subject to x − x ∈ N(A), x ∈ C 

• The dual conic problem is 

minimize	 x�µ 

ˆsubject to µ − c ∈ N(A)⊥, µ ∈	C. 

• Using N(A)⊥ = Ra(A�), write the constraints 
as c − µ ∈ −Ra(A�) = Ra(A�), µ ∈ Ĉ, or 

ˆ
c − µ = A�λ, µ ∈ C, for some λ ∈ �m. 

• Change variables µ = c − A�λ, write the dual as 

minimize x�(c − A�λ) 

subject to c − A�λ ∈ Ĉ 

discard the constant x�c, use the fact Ax = b, and 
change from min to max. 



SOME EXAMPLES
 

•	 Nonnegative Orthant: C = {x | x ≥ 0}. 
The Second Order Cone: Let• 

�	 � 
2 2 

� 

C	= (x1, . . . , xn) | xn ≥ x1 + · · · + xn−1 

x1

x2

x3

The Positive Semidefinite Cone: Consider• 
the space of symmetric n × n matrices, viewed as 
the space �n 2 with the inner product 

n n 

< X,Y >= trace(XY ) = 
�� 

xij yij 

i=1 j=1 

Let C be the cone of matrices that are positive 
semidefinite. 

•	 All these are self-dual , i.e., C = −C∗ = Ĉ. 



SECOND ORDER CONE PROGRAMMING
 

 Second order cone programming is the linear-•
conic problem 

minimize c�x
 

subject to Aix − bi ∈ Ci, i = 1, . . . , m,
 

where c, bi are vectors, Ai are matrices, bi is a 
vector in �ni , and 

Ci : the second order cone of �ni 

The cone here is • 

C = C1 × · · · × Cm 

x1

x2

x3



SECOND ORDER CONE DUALITY 

•	 Using the generic special duality form 

min c�x max b�λ, 
Ax−b∈C	

⇐⇒ 
A�λ=c, λ∈Ĉ 

and self duality of C, the dual problem is 

maximize
 
m� 

i=1 

b�iλi
 

subject to
 
m�

 
A�iλi = c, λi ∈ Ci, i = 1, . . . , m,
 

i=1 

where	λ = (λ1, . . . , λm). 

• The duality theory is no more favorable than 
the one for linear-conic problems. 

• There is no duality gap if there exists a feasible 
solution in the interior of the 2nd order cones Ci. 

• Generally, second order cone problems can be 
recognized from the presence of norm or convex 
quadratic functions in the cost or the constraint 
functions. 

• There are many applications. 



EXAMPLE: ROBUST LINEAR PROGRAMMING
 

minimize c�x
 

subject to a�j x ≤ bj , ∀ (aj , bj ) ∈ Tj , j = 1, . . . , r,
 

where	c ∈ �n, and Tj is a given subset of �n+1.


•	 We convert the problem to the equivalent form 

minimize c�x 

subject to gj (x) ≤ 0, j = 1, . . . , r,
 

where gj (x) = sup(aj ,bj )∈Tj 
{a�j x − bj }.
 

• For special choice where Tj is an ellipsoid, 

Tj = 
�
(aj + Pj uj , bj + qj

� uj ) | �uj � ≤ 1, uj ∈ �nj 
� 

we can express gj (x) ≤ 0 in terms of a SOC: 

gj (x) = sup 
�
(aj + Pj uj )�x − (bj + qj

� uj )
� 

�uj �≤1 

= sup (Pj
�x − qj )�uj + a�j x − bj , 

�uj �≤1 

= �Pj
�x − qj � + a�j x − bj . 

Thus, gj (x) ≤ 0 iff (Pj
�x−qj , bj −a�j x) ∈ Cj , where 

Cj is the SOC of �nj +1. 



LECTURE 16
 

LECTURE OUTLINE
 

• Conic programming 

• Semidefinite programming 

• Exact penalty functions 

• Descent methods for convex/nondifferentiable 
optimization 

• Steepest descent method 



LINEAR-CONIC FORMS
 

min c�x	 max b�λ, 
Ax=b, x∈C 

⇐⇒ 
c−A�λ∈Ĉ 

min c�x max b�λ, 
Ax−b∈C	 

⇐⇒ 
A�λ=c, λ∈Ĉ 

where x ∈ �n, λ ∈ �m, c ∈ �n, b ∈ �m, A : m×n. 

•	 Second order cone programming: 

minimize c�x 

subject to Aix − bi ∈ Ci, i = 1, . . . , m, 

where c, bi are vectors, Ai are matrices, bi is a 
vector in �ni , and 

Ci : the second order cone of �ni 

• The cone here is C = C1 × · · · × Cm 

• The dual problem is 

m 

maximize 
� 

b�iλi 

i=1 
m 

subject to 
� 

A� λi = c, λi ∈ Ci, i = 1, . . . , m, i
 
i=1
 

where λ = (λ1, . . . , λm).
 



SEMIDEFINITE PROGRAMMING 

• Consider the symmetric n × n matrices. Inner 
product < X,Y >= trace(XY ) = 

�n 
i,j=1 xij yij . 

• Let C be the cone of pos. semidefinite matrices. 

• C is self-dual, and its interior is the set of pos
itive definite matrices. 

• Fix symmetric matrices D, A1, . . . , Am, and 
vectors b1, . . . , bm, and consider 

minimize < D,X >
 

subject to < Ai, X >= bi, i = 1, . . . ,m, X ∈ C
 

• Viewing this as a linear-conic problem (the first 
special form), the dual problem (using also self-
duality of C) is 

m
 

maximize 
� 

biλi
 

i=1
 

subject to D − (λ1A1 + + λmAm) ∈ C· · · 

• There is no duality gap if there exists primal 
feasible solution that is pos. definite, or there ex
ists λ such that D − (λ1A1 + + λmAm) is pos. · · · 
definite. 



EXAMPLE: MINIMIZE THE MAXIMUM
 

EIGENVALUE
 

 Given n n symmetric matrix M(λ), depending • ×
on a parameter vector λ, choose λ to minimize the 
maximum eigenvalue of M(λ). 

•	 We pose this problem as 

minimize z 

subject to maximum eigenvalue of M(λ) ≤ z, 

or equivalently 

minimize z 

subject to zI − M(λ) ∈ C, 

where I is the n × n identity matrix, and C is the 
semidefinite cone. 

•	 If M(λ) is an affine function of λ, 

M(λ) = D + λ1M1 + + λmMm,· · · 

the problem has the form of the dual semidefi
nite problem, with the optimization variables be
ing (z, λ1, . . . , λm). 



EXAMPLE: LOWER BOUNDS FOR
 

DISCRETE OPTIMIZATION
 

 Quadr. problem with quadr. equality constraints
 •

minimize x�Q0x + a�0x + b0
 

subject to x�Qix + a�ix + bi = 0, i = 1, . . . , m,
 

Q0, . . . , Qm: symmetric (not necessarily ≥ 0). 

• Can be used for discrete optimization. For ex
ample an integer constraint xi ∈ {0, 1} can be 
expressed by xi 

2 − xi = 0. 

The dual function is • 

q(λ) = inf 
�
x�Q(λ)x + a(λ)�x + b(λ)

�
, 

x∈�n 

where 
m 

Q(λ) = Q0 + 
� 

λiQi, 
i=1 

m m 

a(λ) = a0 + 
� 

λiai, b(λ) = b0 + 
� 

λibi 

i=1 i=1 

• It turns out that the dual problem is equivalent 
to a semidefinite program ... 



EXACT PENALTY FUNCTIONS 

        • We use Fenchel duality to derive an equiva
lence between a constrained convex optimization 
problem, and a penalized problem that is less con
strained or is entirely unconstrained. 

• We consider the problem 

minimize f(x) 
subject to x ∈ X, g(x) ≤ 0, 

where g(x) = 
�
g1(x), . . . , gr(x)

�
, X is a convex 

subset of �n, and f : �n → � and gj : �n → � 
are real-valued convex functions. 

• We introduce a convex function P : �r �→ �, 
called penalty function, which satisfies 

P (u) = 0, ∀ u ≤ 0, P (u) > 0, if ui > 0 for some i 

• We consider solving, in place of the original, the 
“penalized” problem 

minimize f(x) + P 
�
g(x)

� 

subject to x ∈ X, 



FENCHEL DUALITY
 

We have • 

inf 
�
f(x) + P 

�
g(x)

�� 
= inf 

�
p(u) + P (u)

�
 

x∈X	 u∈�r 

where p(u) = infx∈X, g(x)≤u f(x) is the primal func
tion. 

• Assume −∞ < q∗ and f∗ < ∞ so that p is 
proper (in addition to being convex). 

•	 By Fenchel duality 

inf 
�
p(u) + P (u)

� 
= sup

�
q(µ) − Q(µ)

�
, 

u∈� r	 µ≥0 

where for µ ≥ 0, 

q(µ) = inf 
�
f(x) + µ�g(x)

� 

x∈X 

is the dual function, and Q is the conjugate convex 
function of P : 

Q(µ) = sup 
�
u�µ − P (u)

� 

u∈�r 



PENALTY CONJUGATES
 

 (1/2c)m2 (c/2)u2

0 u 0 m

Q(m) P(u) = max{0, au}

0 u 0 m

Q(m) 

0 u 0 m

Q(m) P(u)

P(u) = max{0, au +u2}

a

a

Slope = a

u

u

u

µ

µ

µ

0 0

00

0 0

a

Slope = a

Q(µ)P (u) = max{0, au+u2}

P (u) = c max{0, u}

c

P (u) = (c/2)
(
max{0, u}

)2

Q(µ) =
{

(1/2c)µ2 if µ ≥ 0
∞ if µ < 0

Q(µ) =
{ 0 if 0 ≤ µ ≤ c
∞ otherwise

• Important observation: For Q to be flat for 
some µ > 0, P must be nondifferentiable at 0. 



FENCHEL DUALITY VIEW
 

µ0 m

q(m) 

0 m

0 m

q* = f* = f~

~
f

f + Q(m) ~

f + Q(m) ~

f + Q(m) ~

q(m) 

q(m) 

~
f

m~

m~

m~

µ

µ

µ

0

0

0

f̃

f̃

q∗ = f∗ = f̃
q(µ)

q(µ)

q(µ)

f̃ + Q(µ)

f̃ + Q(µ)

f̃ + Q(µ)

µ̃

µ̃

µ̃

• For the penalized and the original problem to 
have equal optimal values, Q must be“flat enough” 
so that some optimal dual solution µ∗ minimizes 
Q, i.e., 0 ∈ ∂Q(µ∗) or equivalently 

µ∗ ∈ ∂P (0) 

• True if P (u) = c 
�r max{0, uj } with c ≥j=1 

�µ∗� for some optimal dual solution µ∗. 



DIRECTIONAL DERIVATIVES 

• Directional derivative of a proper convex f :
 

f �(x; d) = lim 
f(x + αd) − f(x) 

, x ∈ dom(f), d ∈ �n 
α 0 α↓ 

α

Slope: f ′(x; d)

α0

f(x + αd)

Slope: f(x+αd)−f(x)
α

f(x)

The ratio • 

f(x + αd) − f(x) 
α 

is monotonically nonincreasing as α 0 and con
verges to f �(x; d). 

↓ 

For all x ∈ ri
�
dom(f)

�
, f �(x; ) is the support • · 

function of ∂f(x). 



f : �n �

STEEPEST DESCENT DIRECTION
 

• Consider unconstrained minimization of convex

 → �. 

A descent direction d at x is one for which • 
f �(x; d) < 0, where 

f �(x; d) = lim 
f(x + αd) − f(x) 

= sup d�g 
α↓0 α g∈∂f (x) 

is the directional derivative. 

• Can decrease f by moving from x along descent 
direction d by small stepsize α. 

• Direction of steepest descent solves the problem
 

minimize f �(x; d) 
subject to �d� ≤ 1


• Interesting fact: The steepest descent direc
tion is −g∗, where g∗ is the vector of minimum 
norm in ∂f(x): 

min f �(x; d) = min max d�g = max min d�g 
�d�≤1 �d�≤1 g∈∂f(x) g∈∂f (x) �d�≤1 

= max min 
g∈∂f (x) 

�
−�g�

� 
= − 

g∈∂f(x) 
�g� 



STEEPEST DESCENT METHOD
 

• Start with any x0 ∈ �n. 

• For k ≥ 0, calculate −gk, the steepest descent 
direction at xk and set 

xk+1 = xk − αkgk 

Difficulties:• 

− Need the entire ∂f(xk) to compute gk. 
− Serious convergence issues due to disconti

nuity of ∂f(x) (the method has no clue that 
∂f(x) may change drastically nearby). 

• Example with αk determined by minimization 
along −gk: {xk} converges to nonoptimal point. 
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LECTURE 17 

LECTURE OUTLINE 

• Subgradient methods 

• Calculation of subgradients 

• Convergence 

*********************************************** 

• Steepest descent at a point requires knowledge 
of the entire subdifferential at a point 

• Convergence failure of steepest descent 

z

x2

x1
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2

3

• Subgradient methods abandon the idea of com
puting the full subdifferential to effect cost func
tion descent ... 

• Move instead along the direction of a single 
arbitrary subgradient 



SINGLE SUBGRADIENT CALCULATION 

•	 Subgradient calculation for minimax: 

f(x) = sup φ(x, z) 
z∈Z 

where Z ⊂ �m	 and φ( , z) is convex for all z ∈ Z.· 
• For fixed x ∈ dom(f), assume that zx ∈ Z
 
attains the supremum above. Then
 

gx ∈ ∂φ(x, zx)	 
 gx ∈ ∂f(x)⇒


•	 Proof: From subgradient inequality, for all y, 

f(y) = sup φ(y, z) ≥ φ(y, zx) ≥ φ(x, zx) + gx
� (y − x)
 

z∈Z
 

= f(x) + gx
� (y −	x) 

•	 Special case: Dual problem of minx∈X, g(x)≤0 f(x): 

max q(µ) ≡ inf L(x, µ) = inf 
�
f(x) + µ�g(x)

� 

µ≥0 x∈X	 x∈X 

or minµ≥0 F (µ), where F (−µ) ≡ −q(µ).
 


 If xµ ∈ arg minx∈X 
�
f(x) + µ�g(x)

� 
then
•


−g(xµ) ∈ ∂F (µ)
 



• Problem:	 Minimize convex function f : �n �

LGORITHMS: SUBGRADIENT METHOD
 

→ 
� over a closed convex set X. 

Iterative descent idea has difficulties in the ab• 
sence of differentiability of f . 

•	 Subgradient method:
 

xk+1 = PX (xk − αkgk),
 

where gk is any subgradient of f at xk, αk is a 
positive stepsize, and PX ( ) is projection on X.·


M

mk

mk + sgk

m*

Level sets of q

mk+1 =PM
 (mk + s gk)

Level sets of f

X
xk

xk − αkgk

xk+1 = PX(xk − αkgk)

x∗

gk

∂f(xk)



KEY PROPERTY OF SUBGRADIENT METHOD
 

• For a small enough stepsize αk, it reduces the 
Euclidean distance to the optimum. 

M

mk

mk + s kgk

mk+1 =PM
 (mk + s kgk)

m*

< 90 o

Level sets of qLevel sets of f X

xk

x∗

xk+1 = PX(xk − αkgk)

xk − αkgk

< 90◦

• Proposition: Let {xk} be generated by the 
subgradient method. Then, for all y ∈ X and k: 

2 2 2 �xk+1 −y� ≤ �xk −y� −2αk

�
f(xk)−f(y)

�
+αk

2 �gk� 

and if f(y) < f(xk), 

�xk+1 − y� < �xk − y�, 

for all αk such that 

2
�
f(xk) − f(y)

� 

0 < αk < . �gk�2 



PROOF
 

•	 Proof of nonexpansive property 

�PX (x) − PX (y)� ≤ �x − y�, ∀ x, y ∈ �n. 

Use the projection theorem to write 
�
z − PX (x)

���
x − PX (x)

� 
≤ 0, ∀ z ∈ X 

from which 
�
PX (y) − PX (x)

���
x − PX (x)

� 
≤ 0. 

Similarly, 
�
PX (x) − PX (y)

���
y − PX (y)

� 
≤ 0. 

Adding and using the Schwarz inequality,
 

��PX (y) − PX (x)
��2 ≤ 

�
PX (y) − PX (x)

��
(y − x) 

≤	
��PX (y) − PX (x)

�� · �y − x� 

Q.E.D. 

• Proof of proposition: Since projection is non-
expansive, we obtain for all y ∈ X and k, 

2 �xk+1 − y�2 = 
��PX (xk − αkgk) − y

�� 

≤ �xk − αkgk − y�2 

= �xk − y�2 − 2αkgk
� (xk − y) + α2 

k�gk�2 

2 ,≤ �xk − y�2 − 2αk

�
f(xk) − f(y)

� 
+ αk�gk�2

where the last inequality follows from the subgra
dient inequality. Q.E.D. 



CONVERGENCE MECHANISM
 

• Assume constant stepsize: αk ≡ α 

• If �gk� ≤ c for some constant c and all k, 

�xk+1−x∗�2 ≤ �xk−x∗�2−2α
�
f(xk)−f(x∗)

�
+α2c2 

so the distance to the optimum decreases if 

2
�
f(xk) − f(x∗)

� 

0 < α < 
c2 

or equivalently, if xk does not belong to the level 
set � 

x 
��� f(x) < f(x∗) + 

αc2 
� 

2 

Optimal Solution
Set

Level Set {  | q( )  q* - sC2/2}Level set{
x | f(x) ≤ f∗ + αc2/2

}

Optimal solution set

x0



STEPSIZE RULES
 

• Constant Stepsize: αk ≡ α. 

• Diminishing Stepsize: αk → 0, 
�

k αk = ∞ 

• Dynamic Stepsize: 
f(xk) − fk

αk = 
c2 

where fk is an estimate of f∗: 
− If fk = f∗, makes progress at every iteration. 

If fk < f∗ it tends to oscillate around the 
optimum. If fk > f∗ it tends towards the 
level set {x | f(x) ≤ fk}. 

− fk can be adjusted based on the progress of 
the method. 

• Example of dynamic stepsize rule: 

fk = min f(xj ) − δk, 
0≤j≤k 

and δk (the “aspiration level of cost reduction”) is 
updated according to 

� 
ρδk if f(xk+1) ≤ fk,

δk+1 = max
�
βδk, δ

� 
if f(xk+1) > fk, 

where δ > 0, β < 1, and ρ ≥ 1 are fixed constants.
 



SAMPLE CONVERGENCE RESULTS
 

• Let f = infk≥0 f(xk), and assume that for some 
c, we have 

c ≥ sup
�
�g� | g ∈ ∂f(xk)

�
. 

k≥0 

• Proposition: Assume that αk is fixed at some 
positive scalar α. Then: 

(a) If f∗ = −∞, then f = f∗. 

(b) If f∗ > −∞, then 

αc2 
.f ≤ f∗ +

2 

• Proposition: If αk satisfies 

∞
lim αk = 0, 

� 
αk = ∞, 

k→∞ 
k=0 

then f = f∗. 

• Similar propositions for dynamic stepsize rules.
 

• Many variants ... 



LECTURE 18
 

LECTURE OUTLINE
 

• Approximate subgradient methods
 

�-subdifferential • 

• �-subgradient methods 

• Incremental subgradient methods
 



APPROXIMATE SUBGRADIENT METHODS
 

Consider minimization of • 

f(x) = sup φ(x, z)
 
z∈Z 

where Z ⊂ �m and φ( , z) is convex for all z ∈ Z· 
(dual minimization is a special case). 

• To compute subgradients of f at x ∈ dom(f), 
we find zx ∈ Z attaining the supremum above. 
Then 

gx ∈ ∂φ(x, zx)	 gx ∈ ∂f(x)⇒ 

•	 Two potential areas of difficulty: 
− For subgradient method, we need to solve 

exactly the above maximization over z ∈ Z. 
− For steepest descent, we need all the subgra

dients, and then there are convergence diffi
culties to contend with. 

• In this lecture we address the first difficulty, in 
the next lecture the second. 

• We consider methods that use “approximate” 
subgradients. 



�-SUBDIFFERENTIAL
 

• We enlarge ∂f(x) so that we take into account 
“nearby” subgradients. 

• Fot a proper convex f : �n �→ (−∞, ∞] and 
� > 0, we say that a vector g is an �-subgradient 
of f at a point x ∈ dom(f) if 

f(z) ≥ f(x) + (z − x)�g − �, ∀ z ∈ �n 

0

f(z)

(−g, 1)

z

(
x, f(x) − ε

)ε

• The �-subdifferential ∂�f(x) is the set of all �
subgradients of f at x. By convention, ∂�f(x) = Ø 
for x /∈ dom(f). 

We have ∩� 0∂�f(x) = ∂f(x) and • ↓ 

∂�1 f(x) ⊂ ∂�2 f(x) if 0 < �1 < �2 



PROPERTIES OF �-SUBDIFFERENTIALS
 

 Assume that f is closed proper convex, � > 0.
 •
• ∂�f(x) is nonempty and closed for all x ∈
dom(f). (Use nonvertical separating hyperplane 
theorem.) 

z

ε

x

Slopes: endpoints of ∂εf(x)

D
z

ε

x
D

Slope: right endpoint
of ∂εf(x)

f(z)f(z)

0 0

∂�f(x) is compact iff x ∈ int
�
dom(f)

�
. True in • 

particular, if f is real-valued. 

• Neighborhood/continuity property: Sub-
gradients at nearby points are �-subgradients at 
given point (for sufficiently large �). 

• The support function of ∂�f(x) is 

σ∂�f(x)(y) = sup y�g = inf 
f(x + αy) − f(x) + � 

g∈∂�f(x) α>0 α 



CALCULATION OF AN �-SUBGRADIENT
 

 Consider minimization of •

f(x) = sup φ(x, z), (1) 
z∈Z 

where x ∈ �n, z ∈ �m, Z is a subset of �m, and 
φ : �n × �m �→ (−∞, ∞] is a function such that 
φ( , z) is convex and closed for each z ∈ Z.· 
• How to calculate �-subgradient at x ∈ dom(f)?
 

• Let zx ∈ Z attain the supremum within � ≥ 0 
in Eq. (1), and let gx be some subgradient of the 
convex function φ( , zx).· 
• For all y ∈ �n, using the subgradient inequality, 

f(y) = sup φ(y, z) ≥ φ(y, zx) 
z∈Z 

≥ φ(x, zx) + gx
� (y − x) ≥ f(x) − � + gx

� (y − x) 

i.e., gx is an �-subgradient of f at x, so 

φ(x, zx) ≥ sup φ(x, z) − � and gx ∈ ∂φ(x, zx) 
z∈Z 

⇒ gx ∈ ∂�f(x) 



�-SUBGRADIENT METHOD
 

• Can be viewed as an approximate subgradient 
method, using an �-subgradient in place of a sub-
gradient. 

• Problem: Minimize convex f : �n �→ � over a 
closed convex set X. 

Method: • 

xk+1 = PX (xk − αkgk) 

where gk is an �k-subgradient of f at xk, αk is a 
positive stepsize, and PX ( ) denotes projection on· 
X. 

• Can be viewed as subgradient method with “er
rors”. 



CONVERGENCE ANALYSIS
 

sic inequality: If {xk} is the �-subgradient • Ba
method sequence, for all y ∈ X and k ≥ 0 

2 2 2 �xk+1−y� ≤ �xk−y� −2αk

�
f(xk)−f(y)−�k

�
+αk

2 �gk� 

• Replicate the entire convergence analysis for 
subgradient methods, but carry along the �k terms. 

• Example: Constant αk ≡ α, constant �k ≡ �. 
Assume �gk� ≤ c for all k. For any optimal x∗, 

�xk+1−x∗�2 ≤ �xk−x∗�2−2α
�
f(xk)−f∗−�

�
+α2c2 , 

so the distance to x∗ decreases if 

2
�
f(xk) − f∗ − �

� 

0 < α < 
c2 

or equivalently, if xk is outside the level set 

� 
αc2 

� 

x 
��� f(x) ≤ f∗ + � + 

2 

Example: If αk 0, 
�

k αk →∞, and �k �,• → →
we get convergence to the �-optimal set. 



INCREMENTAL SUBGRADIENT METHODS
 

 Consider minimization of sum •
m 

f(x) = 
� 

fi(x) 
i=1 

• Often arises in duality contexts with m: very 
large (e.g., separable problems). 

• Incremental method moves x along a sub-
gradient gi of a component function fi NOT 
the (expensive) subgradient of f , which is 

�
i gi. 

• View an iteration as a cycle of m subiterations, 
one for each component fi. 

• Let xk be obtained after k cycles. To obtain 
xk+1, do one more cycle: Start with ψ0 = xk, and 
set xk+1 = ψm, after the m steps 

ψi = PX (ψi−1 − αkgi), i = 1, . . . ,m 

with gi being a subgradient of fi at ψi−1. 

• Motivation is faster convergence. A cycle
 
can make much more progress than a subgradient
 
iteration with essentially the same computation.
 



CONNECTION WITH �-SUBGRADIENTS 

• Neighborhood property: If x and x are
 
“near” each other, then subgradients at x can be
 
viewed as �-subgradients at x, with � “small.”
 

• If g ∈ ∂f(x), we have for all z ∈ �n, 

f(z) ≥ f(x) + g�(z − x)
 
≥ f(x) + g�(z − x) + f(x) − f(x) + g�(x − x)
 
≥ f(x) + g�(z − x) − �,
 

where � = |f(x) − f(x)| + �g� · �x − x�. Thus, 
g ∈ ∂�f(x), with �: small when x is near x. 

• The incremental subgradient iter. is an �-subgradient 
iter. with � = �1 + + �m, where �i is the “error” · · · 
in ith step in the cycle (�i: Proportional to αk).
 

Use
• 

∂�1 f1(x) + + ∂�m fm(x) ⊂ ∂�f(x),· · · 

where � = �1 + + �m, to approximate the �· · · 
subdifferential of the sum f = 

�m
i=1 fi. 

• Convergence to optimal if αk → 0, 
�

k αk →∞. 



CONVERGENCE OF INCREMENTAL SUBGR.
 

• Problem 
m  

min fi(x) 
x X 

�
∈

i=1 

• Incremental subgradient method 

xk+1 = ψm,k, ψi,k = [ψi−1,k − αkgi,k]+ 
, i = 1, . . . ,m 

starting with ψ0,k = xk, where gi,k is a subgradi
ent of fi at ψi−1,k. 

• Analysis parallels/extends the one for nonincre
mental subgradient methods 

•	 Key Lemma: For all y ∈ X and k, 

||xk+1−y||2 ≤ ||xk−y||2−2αk

�
f(xk)−f(y)

�
+αk 

2 C2, 

where C = 
�m

i=1 Ci and 

Ci = sup 
g ∈ ∂fi(xk) ∪ ∂fi(ψi−1,k)
�
 

k 

�
||g|| |




ERROR BOUND: CONSTANT STEPSIZE
 

 For αk  α, we have • ≡

inf f(xk) ≤ f∗ + 
αC2 

≤ f∗ + 
αm2C0

2 

k≥0 2 2 

where 
C0 = max{C1, . . . , Cm} 

is the max component subgradient bound. (Com
parable error to the nonincremental method.) 

• Sharpness of the estimate: There are prob
lems for which the upper bound is (almost) sharp 
with cyclic order of processing the component func
tions (see the end-of-chapter problems). 

• Lower bound on the error: There is a prob
lem, where even with best processing order, 

f∗ + 
αmC0

2 

≤ inf f(xk)
2 k≥0 

where 
C0 = max{C1, . . . , Cm} 

• Question: Is it possible to improve the upper 
bound by optimizing the order of processing the 
component functions? 



RANDOMIZED ORDER METHODS
 

xk+1 = 
�
xk − αkg(

+ 
ωk, xk)

where ωk is a random variable taking 

�

equiprobable 
values from the set {1, . . . ,m}, and g(ωk, xk) is a 
subgradient of the component fωk at xk. 

•	 Assumptions: 

(a)	 {ωk} is a sequence of independent random 
variables. Furthermore, the sequence {ωk}
is independent of the sequence {xk}. 

(b) The set of subgradients 
�
g(ωk, xk) | k = 

0, 1, . . .
� 

is bounded, i.e., there exists a pos
itive constant C0 such that with prob. 1 

||g(ωk, xk)|| ≤ C0, ∀ k ≥ 0 

•	 Stepsize Rules: 
− Constant: αk ≡ α 

− Diminishing: 
�

k αk = ∞, 
�

k(αk)2 < ∞ 

− Dynamic 



RANDOMIZED METHOD W/ CONSTANT STEP



• With probability 1 

αmC2 

inf f(x  ≤ f∗ 
k) + 0

k 0 2 ≥

A better/sharp error bound!
 

Proof: By adapting key lemma, for all y ∈ X, k
 

||xk+1−y||2 ≤ ||xk−y||2−2α
�
fωk (xk)−fωk (y)

�
+α2C0

2 

Take conditional expectation with Fk = {x0, . . . , xk} 

E
�
||xk+1 − y||2 | Fk

� 
≤ ||xk − y||2 

2− 2αE
�
fωk (xk) − fωk (y) | Fk

� 
+ α2C0 

m� 1 2= ||xk − y||2 − 2α 
i=1 

m 

�
fi(xk) − fi(y)

� 
+ α2C0 

2= ||xk − y||2 − 
2 
m

α �
f(xk) − f(y)

� 
+ α2C0 , 

where the first equality follows since ωk takes the 
values 1, . . . ,m with equal probability 1/m. 



PROOF CONTINUED I
 

> 0, consider the level set Lγ defined by 

�  
2 αmC2 

 x ∈ X | f(x) < f∗ + + 0 

γ 2 

�
•	 Fix γ

Lγ =

and let yγ ∈ Lγ be such that f(yγ ) = f∗ + γ 
1 . 

Define a new process {x̂k} as follows 

� �
x̂k − αg(ωk, x̂k)

�+ if x̂k ∈/ Lγ ,x̂k+1 = 
yγ	 otherwise, 

where x̂0 = x0. We argue that {x̂k} (and hence 
also {xk}) will eventually enter each of the sets 
Lγ . 

Using key lemma with y = yγ , we have 

E
�
||x̂k+1 − yγ ||2 | Fk

� 
≤ ||x̂k − yγ ||2 − zk, 

where 

= 

� 
2 
m
α 
�
f(x̂k) − f(yγ )

� 
− α2C0

2 

 if x̂k ∈/ Lγ ,zk 0 if x̂k = yγ .
 



PROOF CONTINUED II


 x̂k ∈/ Lγ , we have 

2α  
= f(x̂k) − f(yγ ) − α2C2 

m 0

  
2

• If

zk 
� �

2α 
�

2 αmC0 1 
�

0≥ 
m

f∗ + 
γ 

+
2 

− f∗ − 
γ 

− α2C2 

2α 
= . 
mγ 

Hence, as long as x̂k ∈/ Lγ , we have 

2α 
E

�
||x̂k+1 − yγ ||2 | Fk

� 
≤ ||x̂k − yγ ||2 − 

mγ 

This, cannot happen for an infinite number of it
erations, so that x̂k Lγ for sufficiently large ∈
k (the Supermartingale Convergence Theorem is 
used here; see the notes.) Hence, in the original 
process we have 

inf f(xk) ≤ f∗ +
2

+ 
αmC0

2 

k≥0 γ 2 

with probability 1. Letting γ → ∞, we obtain 
infk≥0 f(xk) ≤ f∗ + αmC2/2. Q.E.D.0 



A CONVERGENCE RATE RESULT
 

• Let αk ≡ α in the randomized method. Then, 
for any positive scalar �, we have with prob. 1 

αmC2 
0 + �

min f(xk) ≤ f∗ + , 
0≤k≤N 2 

where N is a random variable with 

E
�
N

� 
≤ 
m

�
d(x0, X∗)

�2 

α� 

where d(x0, X∗) is the min distance of x0 to the 
optimal set X∗. 

• Compare w/ the deterministic method. It is
 
guaranteed to reach after processing no more than
 

m
�
d(x0, X

∗)
�2 

K = 
α� 

components the level set 

2
� �� αm2C0 + � 

� 
x � f(x) ≤ f∗ + 

2 



LECTURE 19
 

LECTURE OUTLINE
 

Return to descent methods • 

• Fixing the convergence problem of steepest de
scent 

�-descent method • 

• Extended monotropic programming 



IMPROVING STEEPEST DESCENT 

 Consider minimization of a convex function f :
•
�n �→ �, over a closed convex set X. 

• Return to iterative descent: Generate {xk} with 

f(xk+1) < f(xk) 

(unless xk is optimal). 

• If f is differentiable, the gradient/steepest de
scent method is 

xk+1 = xk − αk�f(xk) 

Has good convergence for αk sufficiently small or 
optimally chosen. 

• If f is nondifferentiable, the steepest descent 
method is 

xk+1 = xk − αkgk 

where gk is the vector of minimum norm on ∂f(xk) 
... but has convergence difficulties. 

We will discuss another method, called �-descent:• 

xk+1 = xk − αkgk
 

where gk is the vector of minimum norm on ∂�f(xk).
 
It fixes the convergence difficulties. 



REVIEW OF �-SUBGRADIENTS
 

• For a proper convex f : �n �→ (−∞, ∞] and 
� > 0, we say that a vector g is an �-subgradient 
of f at a point x ∈ dom(f) if 

f(z) ≥ f(x) + (z − x)�g − �, ∀ z ∈ �n 

0

f(z)

(−g, 1)

z

(
x, f(x) − ε

)ε

• The �-subdifferential ∂�f(x) is the set of all �
subgradients of f at x. By convention, ∂�f(x) = Ø 
for x /∈ dom(f). 

We have ∩� 0∂�f(x) = ∂f(x) and • ↓ 

∂�1 f(x) ⊂ ∂�2 f(x) if 0 < �1 < �2 



�-SUBGRADIENTS AND CONJUGACY 

• For any x ∈ dom(f), consider x-translation of 
f , i.e., the function fx given by 

fx(d) = f(x + d) − f(x), ∀ d ∈ �n 

and its conjugate 

fx
�(g) = sup 

�
d�g−f(x+d)+f(x)

� 
= f�(g)+f(x)−g�x 

d∈�n 


 We have •


g ∈ ∂f(x) iff sup 
�
d�g−f(x+d)+f(x)

� 
≤ 0,
 

d∈�n 

so ∂f(x) is the 0-level set of fx
�: 

∂f(x) = 
�
g | fx

�(g) ≤ 0
�
. 

Similarly, ∂�f(x) is the �-level set of fx
�: 

∂�f(x) = 
�
g | fx

�(g) ≤ �
� 



� � � � 

� � 

� 

ε-SUBDIFFERENTIALS AS LEVEL SETS 

• We have 

∂εf(x) =  g | f�(g)+f(x)−g′x ≤ ε = g | fx
�(g) ≤ ε 

Translated 
Epigraph 
of f 

0 

0 

0 

fx(y) Conjugatefx(d) 

dy 0 
(a) 

dy 

fx(y)fx(d) 

0 

(b) 

ffx(y)(d)x

dy


f(x) - (cl f)(x)


0 

(c) 

gfxx�(λ()g) 

gλ 

gfxx
�
(λ(g) ) 

gλ 

gfxx
�(λ(g) ) 

f(x) - (cl f)(x) 

gλ 

(0) = 0 


• If f is closed 

sup −fx
�(g) = fx

��(0) = fx
g∈�n 

so ∂εf(x) =  Ø for every x ∈ dom(f) and ε > 0. 



PROPERTIES OF �-SUBDIFFERENTIALS
 

• Let f : closed proper convex, x ∈ dom(f), � > 0.
 

       • Then ∂�f(x) is nonempty and closed.

• ∂�f(x) is compact iff fx
� has no nonzero di

rections of recession. True if f is real-valued or 
x ∈ int

�
dom(f)

� 
[support fn of dom(fx) is reces

sion fn of fx
�]. 

• In one dimension: g ∈ ∂�f(x) iff f(x + αd) ≥
f(x) − � + αd�g for all d ∈ �n and α > 0. 

• So g ∈ ∂�f(x) iff the line with slope d�g that 
passes through f(x) − � lies under f(x + αd). 

Slope = supg∈∂εf(x) d′g

f(x)

f(x) − ε
)

0 α

Slope = infg∈∂εf(x) d′g

ε

Fd(α) = f(x + αd)

Therefore,• 

sup d�g = inf 
f(x + αd) − f(x) + � 

g∈∂�f(x) α>0 α 

This formula for the support function σ∂�f(x)(d) 
can be shown also in multiple dimensions. 



�-DESCENT PROPERTIES
 

• For f : closed proper convex, by definition, 0 ∈
 
∂�f(x) iff 

f(x) ≤ inf f(z) + � 
z∈�n 

• For f : closed proper convex and d ∈ �n, 

sup d�g = inf 
f(x + αd) − f(x) + � 

g∈∂�f(x) α>0 α 

so 

infα>0 f(x + αd) < f(x) − � iff sup d�g < 0 
g∈∂�f (x) 

zx

Slope = supg∈∂εf(x) d′g

Slope = 0

f(x)

f(x) − ε
)

f(x)

f(x) − ε
)

0 0

f(z) f(x + αd)

α

•	 If 0 ∈/ ∂�f(x), we have supg∈∂�f(x) d
�g < 0 for 

g = arg min 
g∈∂�f(x) 

�g�, 

(Projection Th.), so infα>0 f(x − αg) < f(x) − �.
 



�-DESCENT METHOD
 

• Method to minimize closed proper convex f : 

xk+1 = xk − αkgk 

where 
−gk = arg min 

g∈∂�f(xk ) 
�g�, 

and αk is a positive stepsize. 

• If gk = 0, i.e., 0 ∈ ∂�f(xk), then xk is an �
optimal solution. 

If gk = 0, choose αk that reduces the cost func
tion by at least �, i.e., 

f(xk+1) = f(xk − αkgk) ≤ f(xk) − � 

• Drawback: Must know ∂�f(xk). 

• Motivation for a variant where ∂�f(xk) is ap
proximated by a set A(xk) that can be computed 
more easily than ∂�f(xk). 

Then use • 

gk = arg min 
g∈A(xk) 

�g�, 

[project on A(xk) rather than ∂�f(xk)]. 



�-DESCENT - OUTER APPROXIMATION
 

• Here ∂�f(xk) is approximated by a set A(x) 
such that 

∂�f(xk) ⊂ A(xk) ⊂ ∂γ�f(xk), 

where γ is a scalar with γ > 1. 

• Then the method terminates with a γ�-optimal 
solution, and effects at least �-reduction on f oth
erwise. 

• Example of outer approximation for sum case
 

f = f1 + + fm· · · 

Take 

A(x) = cl
�
∂�f1(x) + + ∂�fm(x)

�
,· · · 

based on the fact 

∂�f(x) ⊂ cl
�
∂�f1(x) + 
+ ∂�fm(x)

� 
⊂ ∂m�f(x)· · ·


• Application to separable problems where each 
∂�fi(x) is a one-dimensional interval. Then to find 
an �-descent direction, we must solve a quadratic 
programming/projection problem. 



EXTENDED MONOTROPIC PROGRAMMING
 

• Let
− x = (x1, . . . , xm) with xi ∈ �ni 

− fi : �ni �→ (−∞, ∞] is closed proper convex 

− S is a subspace of �n1+···+nm 

• Extended monotropic programming problem:
 

m 

minimize 
� 

fi(xi) 
i=1 

subject to x ∈ S 

• Monotropic programming is the special case 
where each xi is 1-dimensional. 

• Models many important optimization problems 
(linear, quadratic, convex network, etc). 

• Has a powerful symmetric duality theory. 



DUALITY
 

• Convert to the equivalent form 

m 

minimize 
� 

fi(zi) 
i=1 

subject to zi = xi, i = 1, . . . ,m, x ∈ S 

• Assigning a dual vector λi ∈ �ni to the con
straint zi = xi, the dual function is 

m 

q(λ) = inf λ�x + 
� 

inf 
�
fi(zi) − λ�izi

� 

x∈S
i=1 

zi∈�ni 

� �m
i=1 qi(λi) if λ ∈ S⊥,= −∞ otherwise,


where qi(λi) = infzi∈�
�
fi(zi) − λ�izi

� 
= −fi

�(λi). 

• The dual problem is the (symmetric) extended 
monotropic program 

m 

minimize 
� 

fi
�(λi) 

i=1 

subject to λ ∈ S⊥ 



OPTIMALITY CONDITIONS
 

Assume that −∞ < q∗ = f∗ < ∞. Then • 
(x∗, λ∗) are optimal primal and dual solution pair 
if and only if 

x∗ ∈ S, λ∗ ∈ S⊥, λi
∗ ∈ ∂fi(x∗i ), ∀ i 

• Specialization to the monotropic case (ni = 
1 for all i): The vectors x∗ and λ∗ are optimal 
primal and dual solution pair if and only if 

x∗ ∈ S, λ∗ ∈ S⊥, (xi
∗, λ∗i ) ∈ Γi, ∀ i 

where 

Γi = 
�
(xi, λi) | xi ∈ dom(fi), fi

−(xi) ≤ λi ≤ fi 
+(xi)

� 

• Interesting application of these conditions to 
electrical networks. 



STRONG DUALITY THEOREM
 

ssume that the extended monotropic program• A
ming problem is feasible, and that for all feasible 
solutions x, the set 

S⊥ + ∂�D1,�(x) + + Dm,�(x)· · · 

is closed for all � > 0, where 

Di,�(x) = 
�
(0, . . . , 0, λi, 0, . . . , 0) | λi ∈ ∂�fi(xi)

� 

Then q∗ = f∗. 

• An unusual duality condition. It is satisfied if 
each set ∂�fi(x) is either compact or polyhedral. 
Proof is also unusual - uses the �-descent method! 

• Monotropic programming case: If ni = 1, 
Di,�(x) is an interval, so it is polyhedral, and q∗ = 
f∗. 

There are some other cases of interest. See the • 
text. 

• The monotropic duality result extends to con
vex separable problems with nonlinear constraints. 
(Hard to prove ...) 



LECTURE 20 

LECTURE OUTLINE 

•	 Approximation methods 

•	 Cutting plane methods 

•	 Proximal minimization algorithm
 

•	 Proximal cutting plane algorithm 

Bundle methods • 



APPROXIMATION APPROACHES
 

 Approximation methods replace the original •
problem with an approximate problem. 

• The approximation may be iteratively refined, 
for convergence to an exact optimum. 

•	 A partial list of methods: 
− Cutting plane/outer approximation. 
− Simplicial decomposition/inner approxima

tion. 
− Proximal methods (including Augmented La

grangian methods for constrained minimiza
tion). 

− Interior point methods. 

•	 A partial list of combination of methods: 
− Combined inner-outer approximation. 
− Bundle methods (proximal-cutting plane). 
− Combined proximal-subgradient (incremen

tal option). 



SUBGRADIENTS-OUTER APPROXIMATION
 

Consider minimization of a convex function f :• 
�n �→ �, over a closed convex set X. 

• We assume that at each x ∈ X, a subgradient 
g of f can be computed. 


 We have •


f(z) ≥ f(x) + g�(z − x), ∀ z ∈ �n ,
 

so each subgradient defines a plane (a linear func
tion) that approximates f from below. 

• The idea of the outer approximation/cutting 
plane approach is to build an ever more accurate 
approximation of f using such planes. 

x0 x1x2x3

f(x)

X

x

f(x0) + (x− x0)′g0

f(x1) + (x− x1)′g1

x∗



CUTTING PLANE METHOD 

•	 Start with any x0 ∈ X. For k ≥ 0, set 

xk+1 ∈ arg min Fk(x), 
x∈X 

where 

Fk(x) = max
�
f(x0)+(x−x0)

�g0, . . . , f(xk)+(x−xk)�gk

� 

and gi is a subgradient of f at xi. 

x0 x1x2x3

f(x)

X

x

f(x0) + (x− x0)′g0

f(x1) + (x− x1)′g1

x∗

• Note that Fk(x) ≤ f(x) for all x, and that 
Fk(xk+1) increases monotonically with k. These 
imply that all limit points of xk are optimal. 

Proof: If xk 	x then Fk(xk) f(x), [otherwise → →
there would exist a hyperplane strictly separating 
epi(f) and (x, limk→∞ Fk(xk))]. This implies that 
f(x) ≤ limk→∞ Fk(x) ≤ f(x) for all x. Q.E.D. 



CONVERGENCE AND TERMINATION
 

• We have for all k

Fk(xk+1) ≤ f∗ ≤ min f(xi) 
i≤k 

• Termination when mini≤k f(xi)−Fk(xk+1) comes 
to within some small tolerance. 

• For f polyhedral, we have finite termination 
with an exactly optimal solution. 

x0 x1x2x3

f(x)

X

x

f(x0) + (x− x0)′g0

f(x1) + (x− x1)′g1

x∗

• Instability problem: The method can make 
large moves that deteriorate the value of f . 

• Starting from the exact minimum it typically 
moves away from that minimum. 



VARIANTS
 

• Variant I: Simultaneously with f , construct 
polyhedral approximations to X. 

• Variant II: Central cutting plane methods 

x0 x1x2

f(x)

X

x

f(x0) + (x− x0)′g0

f(x1) + (x− x1)′g1

x∗

f̃2

Central pair (x2, w2)

Set S1

F1(x)

Variant III: Proximal methods - to be dis• 
cussed next. 



PROXIMAL/BUNDLE METHODS 

Aim to reduce the instability problem at the • 
expense of solving a more difficult subproblem. 

•	 A general form: 

xk+1 ∈ arg min
�
Fk(x) + pk(x)

� 

x∈X 

Fk(x) = max
�
f(x0)+(x−x0)

�g0, . . . , f(xk)+(x−xk)�gk

� 

1 2 pk(x) = 
2ck 

�x − yk� 

where ck is a positive scalar parameter.
 

We refer to pk(x) as the proximal term, and to
• 
its center	yk as the proximal center . 

f(x)

xxk+1 x∗
yk

Fk(x)

γk − pk(x)

γk



PROXIMAL MINIMIZATION ALGORITHM
 

Starting point for analysis: A general algorithm
• 
for convex function minimization 

xk+1 ∈ arg min 
�

f(x) + 
1 2

� 

x∈�n 2ck 
�x − xk� 

n − f : � �→ (−∞, ∞] is closed proper convex 
− ck is a positive scalar parameter 
− x0 is arbitrary starting point 

γk

γk −
1

2ck
‖x− xk‖2

f(x)

xxk+1xk x∗

f(xk)

Convergence mechanism: • 

γk = f(xk+1) + 
1 
ck 
�xk+1 − xk� 2 < f(xk). 

2 

Cost improves by at least 
2c 
1 
k 
�xk+1 −xk� 2, and this 

is sufficient to guarantee convergence. 



RATE OF CONVERGENCE I 

Role of penalty parameter ck:• 

f(x)

xxk+1xk x∗xk+2

f(x)

xxk+1
xk x∗xk+2

Role of growth properties of f near optimal • 
solution set: 

f(x)

xxk+1xk x∗xk+2

f(x)

xxk+1xk x∗
xk+2



RATE OF CONVERGENCE II
 

Assume that for some scalars β > 0, δ > 0, and • 
α ≥ 1, 

nf∗ + β
�
d(x)

�α ≤ f(x), ∀ x ∈ � with d(x) ≤ δ 

where 
d(x) = min 

x∗∈X∗ 
�x − x∗� 

i.e., growth of order α from optimal solution set 
X∗. 

If α = 2 and limk→∞ ck = c̄, then • 

d(xk+1) 1 
lim sup 

d(xk) 
≤ 

1 + βc̄k→∞ 

linear convergence. 

If 1 < α < 2, then • 

d(xk+1)
lim sup �

d(xk)
�1/(α−1) 

< ∞
k→∞ 

superlinear convergence. 



FINITE CONVERGENCE 

Assume growth order α = 1:• 

f∗ + βd(x) ≤ f(x), ∀ x ∈ � n , 

e.g., f is polyhedral. 

f(x)

x
X∗

f∗

f∗ + βd(x)

Slope βSlope β

Method converges finitely (in a single step for • 
c0 sufficiently large). 

f(x)

x

f(x)

xx∗x0x0 x1 x2 = x∗



PROXIMAL CUTTING PLANE METHODS
 

 Same as proximal minimization algorithm, but •
f is replaced by a cutting plane approximation 
Fk: 

1 
xk+1 ∈ arg min 

�
Fk(x) + 2

� 

x∈X 2ck 
�x − xk� 

where 

Fk(x) = max
�
f(x0)+(x−x0)

�g0, . . . , f(xk)+(x−xk)�gk

� 

Drawbacks: • 

(a)	 Hard stability tradeoff: For large enough 
ck and polyhedral X, xk+1 is the exact min
imum of Fk over X in a single minimization, 
so it is identical to the ordinary cutting plane 
method. For small ck convergence is slow. 

(b)	 The number of subgradients used in Fk 

may become very large; the quadratic pro
gram may become very time-consuming. 

These drawbacks motivate algorithmic variants,
• 
called bundle methods. 



BUNDLE METHODS 

 a proximal center yk = xk:
Allow

xk+1 ∈ arg min
�
Fk(x) + pk(x)

�

x∈X 

Fk(x) = max
�
f(x0)+(x−x0)

�g0, . . . , f(xk)+(x−xk)�gk

� 

1 2 pk(x) = 
2ck 

�x − yk� 

Null/Serious test for changing yk: For some • 
fixed β ∈ (0, 1) 

� 
xk+1 if f(yk) − f(xk+1) ≥ βδk, 

yk+1 = 
yk if f(yk) − f(xk+1) < βδk, 

δk = f(yk) − 
�
Fk(xk+1) + pk(xk+1)

� 
> 0 

Serious Step

δk

f(yk)− f(xk+1)

xyk yk+1 = xk+1

f(x)δk

Fk(x)

f(yk)− f(xk+1)

xyk yk+1 = xk+1

Null Step

f(x)

δk
Fk(x)

f(yk)− f(xk+1)

xxk+1yk = yk+1



LECTURE 22
 

LECTURE OUTLINE
 

Review of Fenchel Duality • 

Review of Proximal Minimization • 

Augmented Lagrangian Methods • 

Dual Proximal Minimization Algorithm • 



FENCHEL DUALITY FRAMEWORK


 Consider the problem •

minimize f1(x) + f2(x) 
nsubject to ,
x ∈ � 

n
 n
where f1
 �→ (−∞, ∞] and f2 �→ (−∞, ∞]
 
are closed proper convex functions. 

Line of Analysis: Convert to the equivalent • 
problem 

minimize f1(x1) + f2(x2) 

subject to x1 = x2, x1 ∈ dom(f1), x2 ∈ dom(f2) 

Apply convex programming duality for equality
• 
constraints and obtain the dual problem 

minimize f1
 (λ) + f2 (−λ) 

subject to λ ∈ � n
 ,
 

where f
1
 and f
2
 are the conjugates.
 

Complete symmetry of primal and dual (after a • 
sign change to convert the dual to minimization).
 



FENCHEL DUALITY THEOREM 

• Consider the Fenchel framework: 
  

(a) If f∗ is finite and ri
�
dom(f1)

�
∩ ri

�
dom(f2)

�
=
�


Ø, then strong duality holds and there exists
 
at least one dual optimal solution.
 

(b) Strong duality holds, and (x∗, λ∗) is a primal
 
and dual optimal solution pair if and only if
 

x∗ ∈ arg min 
�
f1(x)−x�λ∗

�
, x∗ ∈ arg min 

�
f2(x)+x�λ∗

� 
x∈�n x∈�n 

By Fenchel inequality, the last condition is equiv• 
alent to 

λ∗ ∈ ∂f1(x
∗) [or equivalently x∗ ∈ ∂f1 

�(λ∗)] 

and 

−λ∗ ∈ ∂f2(x
∗) [or equivalently x∗ ∈ ∂f2 

�(−λ∗)] 



GEOMETRIC INTERPRETATION
 

Slope λ

x∗ x

−f2(x)

q(λ)

f∗ = q∗

−f!
1 (λ)

f!
2 (−λ)

When f1 and/or f2 are differentiable, the opti• 
mality condition is equivalent to 

λ∗ = �f1(x
∗) and/or λ∗ = −�f2(x

∗) 



RECALL PROXIMAL MINIMIZATION


• Applies to minimization of closed convex proper

f : 

  
1 2 xk+1 = arg min 

�
f(x) +  ‖x − xk‖

�
x∈�n 2ck 

where f : �n →� (−∞, ∞], x0 is an arbitrary start
ing point, and {ck} is a positive scalar parameter 
sequence with infk≥0 ck > 0. 

• We have f(xk) → f ∗. Also xk → some minimizer 
of f , provided one exists. 

• Finite convergence for polyhedral f . 

• Each iteration can be viewed in terms of Fenchel 
duality. 

γk 

1 
γk − x

2ck 
‖ − xk‖2 

f (x) 

xxk+1xk x ∗ 

f(xk) 

Slope λk+1 

Optimal dual 
proximal solution 

Optimal primal 
proximal solution 



DUAL PROXIMAL MINIMIZATION
 

The proximal iteration can be written in the  •
Fenchel form: minx{f1(x) + f2(x)} with 

f1(x) = f(x), f2(x) = 
1 
ck 
�x − xk� 2 

2 

The Fenchel dual is • 

minimize f1 
�(λ) + f2 

�(−λ) 

subject to λ ∈ � n 

We have f2 
�(−λ) = −x�kλ + c 

2 
k �λ� 2, so the dual • 

problem is 

minimize f�(λ) − x�kλ + 
c 
2 
k �λ� 2 

subject to λ ∈ � n 

where f� is the conjugate of f . 

f2 is real-valued, so no duality gap. • 

Both primal and dual problems have a unique • 
solution, since they involve a closed, strictly con
vex, and coercive cost function. 



DUAL PROXIMAL ALGORITHM
 

 Can solve the Fenchel-dual problem instead of •
the primal at each iteration: 

ck
λk+1 = arg min 

�
f�(λ) − xk

� λ +
2 
�λ� 2

� 
(1) 

λ∈�n 

Lagragian optimality conditions: • 

xk+1 ∈ arg max 
�
x�λk+1 − f(x)

� 
x∈�n 

1 
xk+1 = arg min 

�
x�λk+1 +

2ck 
�x − xk� 2

� 

x∈�n 

or equivalently, 

λk+1 ∈ ∂f(xk+1), λk+1 = 
xk − xk+1 

ck 

Dual algorithm: At iteration k, obtain λk+1• 
from the dual proximal minimization (1) and set
 

xk+1 = xk − ckλk+1 

As xk converges to a primal optimal solution x∗,• 
the dual sequence λk converges to 0 (a subgradient 
of f at x∗). 



VISUALIZATION
 

γk

γk −
1

2ck
‖x− xk‖2

f(x)

xxk+1xk

x∗

Slope = xk
Slope = xk+1

λk+1

Slope = x∗

δk

δk + x′
kλ− ck

2
‖λ‖2

Primal Proximal Iteration Dual Proximal Iteration

f!(λ)

• The primal and dual implementations are 
mathematically equivalent and generate iden
tical sequences {xk}. 

Which one is preferable depends on whether f
• 
or its conjugate f� has more convenient structure. 

Special case: When −f is the dual function of
• 
the constrained minimization ming(x)≤0 F (x), the 
dual algorithm is equivalent to an important gen
eral purpose algorithm: the Augmented Lagrangian 
method. 

This method (to be discussed shortly) aims to
• 
find a subgradient of the primal function p(u) = 
ming(x)≤u F (x) at u = 0 (i.e., a dual optimal solu
tion). 



AUGMENTED LAGRANGIAN METHOD
 

Consider the convex constrained problem • 

minimize f(x)
 

subject to x ∈ X, Ex = d
 

Primal and dual functions:
• 

p(v) = inf f(x), q(λ) = inf 
�
f(x)+ λ�(Ex − d)

� 
x∈X, x∈X
 

Ex−d=v
 

Assume p: closed, so (q, p) are “conjugate” pair.
• 

Proximal algorithms for maximizing q:• 

� 
1 2

�
λk+1 = arg max q(λ) − 

2ck 
�λ − λk�

µ∈�m 

�
2
�

vk+1 = arg min p(v) + λ�kv + 
ck 

v∈�m 2 
�v� 

Dual update: λk+1 = λk + ckvk+1 

Implementation: • 

vk+1 = Exk+1 − d, xk+1 ∈ arg min Lck (x, λk) 
x∈X 

where Lc is the Augmented Lagrangian function 

Lc(x, λ) = f(x) + λ�(Ex − d) + 
c �Ex − d� 2 

2 



GRADIENT INTERPRETATION
 

λk+1 can be viewed as a gradient: • 

λk+1 = 
xk − xk+1 

= �φck (xk), 
ck 

where 
φc(z) = inf 

�
f(x) + 

1 
c 
�x − z� 2

� 

x∈�n 2 

(For geometrical insight, consider the case where 
f is linear in the following figure.) 

f(x)

xx∗

f(z)

φc(z)

xc(z)z

φc(z)− 1
2c
‖x− z‖2

Slope ∇φc(z)

So the dual update xk+1 = xk − ckλk+1 can be • 
viewed as a gradient iteration for minimizing φc(z) 
(which has the same minima as f). 

The gradient is calculated by the dual prox• 
imal minimization. Possibilities for faster meth
ods (e.g., Newton, Quasi-Newton). Useful in aug
mented Lagrangian methods. 



• 
� 

PROXIMAL LINEAR APPROXIMATION 

nConvex problem: Min f : � �→ � over X.• 

Proximal outer linearization method: Same• 
as proximal minimization algorithm, but f is re
placed by a cutting plane approximation Fk: 

1 
xk+1 ∈ arg min 

�
Fk(x) + 2

� 

x∈�n 2ck 
�x − xk� 

λk+1 = 
xk − xk+1 

ck 

where gi ∈ ∂f(xi) for i ≤ k and 

Fk(x) = max
�

f (x0)+(x−x0)�g0, . . . , f(xk)+(x−xk)�gk

�
+δX (x) 

Proximal Inner Linearization Method (Dual 
proximal implementation): Let Fk be the con
jugate of Fk. Set 

λk+1 ∈ arg min 
�

Fk
�(λ) − x�kλ + 

c 
2 
k �λ� 2

� 

λ∈�n 

xk+1 = xk − ckλk+1 

Obtain gk+1 ∈ ∂f(xk+1), either directly or via 

gk+1 ∈ arg max 
�
x�k+1λ − f�(λ)

� 
λ∈�n 

Add gk+1 to the outer linearization, or xk+1 to• 
the inner linearization, and continue. 



PROXIMAL INNER LINEARIZATION
 

 It is a mathematical equivalent dual to the outer •
linearization method. 

Slope = xk

Slope = xk+1

gk+1

f!(λ)F ∗
k (λ)

Here we use the conjugacy relation between • 
outer and inner linearization. 

Versions of these methods where the proximal • 
center is changed only after some “algorithmic 
progress” is made: 
− The outer linearization version is the (stan

dard) bundle method. 
− The inner linearization version is an inner 

approximation version of a bundle method. 



LECTURE 23
 

LECTURE OUTLINE
 

Interior point methods • 

Constrained optimization case - Barrier method • 

Conic programming cases • 

Linear programming - Path following • 



BARRIER METHOD
 

Inequality constrained problem • 

minimize f(x)
 

subject to x ∈ X, gj (x) ≤ 0, j = 1, . . . , r,
 

where f and gj are real-valued convex and X is 
closed convex. 

We assume that the interior (relative to X) set • 

S = 
�
x ∈ X | gj (x) < 0, j = 1, . . . , r

� 

is nonempty. 

Note that because S is convex, any feasible point • 
can be approached through S (the Line Segment 
Principle). 

The barrier method is an approximation method. • 

It replaces the indicator function of the con• 
straint set 

δ
�
x | cl(S)

�
 

by a smooth approximation within the relative in
terior of S. 



BARRIER FUNCTIONS
 

nsider a barrier function, that is continuous 
oes to ∞ as any one of the constraints gj (x) 

Co• 
and g
approaches 0 from negative values. 

Examples:• 

r r 
1 

B(x) = − 
� 

ln
�
−gj (x)

�
, B(x) = − 

� 
. 

gj (x) 
j=1 j=1 

Barrier method: • 

k x = arg min
�
f(x) + �kB(x)

�
, k = 0, 1, . . . , 

x∈S 

where the parameter sequence {�k} satisfies 0 < 
�k+1 < �k for all k and �k 0.→ 

S

Boundary of S Boundary of S

e B(x)

e' B(x)
e' < e

Boundary of SBoundary of S

ε′ < ε
εB(x)

ε′B(x)

S



BARRIER METHOD - EXAMPLE
 

1 1

2.05 2.1 2.15 2.2 2.25
-1

-0.5

0

0.5

2.05 2.1 2.15 2.2 2.25
-1

-0.5

0

0.5

1)2 2minimize f(x) = 1
2 

�
(x + (x )2

� 

subject to 2 ≤ x 1 , 

with optimal solution x∗ = (2, 0). 

Logarithmic barrier: B(x) = − ln (x 1 − 2)• 

We have xk = 
�
1 + 

√
1 + �k , 0

� 
from• 

xk ∈ arg min 
� 

1 
�
(x 1)2 + (x 2)2

� 
− �k ln (x 1 − 2)

� 

x1>2 
2 

As �k is decreased, the unconstrained minimum • 
xk approaches the constrained minimum x∗ = (2, 0). 

As �k 0, computing xk becomes more difficult • →
because of ill-conditioning (a Newton-like method
 
is essential for solving the approximate problems).
 



CONVERGENCE
 

it point of a sequence {xk} generatedEvery lim• 
by a barrier method is a minimum of the original 
constrained problem. 

Proof: Let {x} be the limit of a subsequence {xk}k∈K . 
Since xk ∈ S and X is closed, x is feasible for the 
original problem. 

If x is not a minimum, there exists a feasible 
x∗ such that f(x∗) < f(x) and therefore also an 
interior point x̃ ∈ S such that f(x̃) < f(x). By the 
definition of xk, 

f(xk) + �kB(xk) ≤ f(x̃) + �kB(x̃), ∀ k, 

so by taking limit 

f(x) + lim inf �kB(xk) ≤ f(x̃) < f(x) 
k→∞, k∈K 

Hence lim infk→∞, k∈K �kB(xk) < 0. 
If x ∈ S, we have limk→∞, k∈K �kB(xk) = 0, 

while if x lies on the boundary of S, we have by 
assumption limk→∞, k∈K B(xk) = ∞. Thus 

lim inf �kB(xk) ≥ 0, 
k→∞ 

– a contradiction. 



SECOND ORDER CONE PROGRAMMING
 

• Consider the SOCP 

minimize c�x
 

subject to Aix − bi ∈ Ci, i = 1, . . . , m,
 

nwhere x ∈ � , c is a vector in � n, and for i = 
1, . . . , m, Ai is an ni × n matrix, bi is a vector in 

ni�ni , and Ci is the second order cone of � .
 

We approximate this problem with
• 

m 

minimize c�x + �k 

� 
Bi(Aix − bi) 

i=1 

nsubject to ,x ∈ �
 

where Bi is the logarithmic barrier function:
 

2 2 2Bi(y) = − ln 
�
yni 

− (y1 + 
+ yni−1)
�
, y ∈ int(Ci),· · ·


and {�k} is a positive sequence with �k 0.→ 

Essential to use Newton’s method to solve the • 
approximating problems.
 

Interesting complexity analysis
• 



SEMIDEFINITE PROGRAMMING
 

Consider the dual SDP • 

maximize b�λ 

subject to C − (λ1A1 + + λmAm) ∈ D, · · · 

where D is the cone of positive semidefinite ma
trices. 

The logarithmic barrier method uses approxi• 
mating problems of the form 

maximize b�λ + �k ln 
�
det(C − λ1A1 −· · ·− λmAm)

� 

mover all λ ∈ � such that C − (λ1A1 + + λmAm)· · · 
is positive definite. 

Here �k > 0 and �k 0.• → 

Furthermore, we should use a starting point • 
such that C − λ1A1 − · · · − λmAm is positive def
inite, and Newton’s method should ensure that 
the iterates keep C − λ1A1 −· · ·− λmAm within the 
positive definite cone. 



� � 

LINEAR PROGRAMS/LOGARITHMIC BARRIER



•
 Apply logarithmic barrier to the linear program


minimize c�x 
(LP)

subject to Ax = b, x ≥ 0, 

The method finds for various � > 0, 

n 

x(�) = arg min F�(x) = arg min c�x − � ln xi , 
x∈S x∈S 

i=1 

where S = 
�
x | Ax = b, x > 0}. We assume that S 

is nonempty and bounded. 

As �
• →
0, x(�) follows the central path 

Point x(e) on
central path

x•

S

x* (e = 0)

c

All central paths start at the analytic center 
n 

x∞ = arg min 
� 

ln xi , 
x∈S 

− 
i=1 

and end at optimal solutions of (LP). 



PATH FOLLOWING W/ NEWTON’S METHOD
 


 Newton’s method for minimizing F�:•
x̃ = x + α(x − x),
 

where x is the pure Newton iterate


2 x = arg min 
�
�F�(x)�(z − x) + 1 (z − x)�� F�(x)(z − x)

�
2

Az=b 


 By straightforward calculation •

x = x − Xq(x, �),
 

Xz 
q(x, �) = − e, e = (1 . . . 1)�, z = c − A�λ, 

λ = (AX2A�)−1AX
�
Xc − �e

�
, 

and X is the diagonal matrix with xi, i = 1, . . . , n 
along the diagonal. 

View q(x, �) as a “normalized” Newton incement • 
[the Newton increment (x−x) transformed by X−1 

that maps x into e]. 

Consider �q(x, �)� as a proximity measure of the • 
current point to the point x(�) on the central path.
 



KEY RESULTS
 

It is sufficient to minimize F� approximately, up • 
to where �q(x, �)� < 1. 

Fact 1: If x > 0, Ax = b, and �q(x, �)� < 1,• 

minc�x − c�y ≤ �
�
n + 

√
n
�
. 

Ay=b, y≥0 

Defines a “tube of convergence”. 

x•

S

x*
Central Path

Set {x | ||q(x,e0)|| < 1}

x(e2)

x(e1)

x(e0)
x0

x2

x1

• Fact 2: The “termination set” 
�
x | �q(x, �)� <
 

1
� 

is part of the region of quadratic convergence. 

Fact 2: If �q(x, �)� < 1, then the pure Newton • 
iterate x satisfies 

�q(x, �)� ≤ �q(x, �)� 2 < 1.
 



SHORT STEP METHODS
 

x*
Central Path

SSet {x | ||q(x,ek)|| < 1}

x•

x(ek+1)

x(ek)xk 

xk+1 

Set {x | ||q(x,ek+1)|| < 1}

Idea: Use a single Newton step before changing • 
� (a little bit, so the next point stays within the 
“tube of convergence”). 

Proposition Let x > 0, Ax = b, and suppose 
that for some γ < 1 we have �q(x, �)� ≤ γ. Then if 
� = (1 − δn−1/2)� for some δ > 0, 

γ2 + δ 
.�q(x, �)� ≤ 

1 − δn−1/2 

In particular, if 

δ ≤ γ(1 − γ)(1 + γ)−1 , 

we have �q(x, �)� ≤ γ. 

Can be used to establish nice complexity results; • 
but � must be reduced VERY slowly. 



LONG STEP METHODS
 

Main features: • 

− Decrease � faster than dictated by complex
ity analysis. 

− Use more than one Newton step per (approx
imate) minimization. 

− Use line search as in unconstrained Newton’s 
method. 

− Require much smaller number of (approxi
mate) minimizations. 

S

x*
Central Path

x•

x(ek+1)
x(ek)xk 

xk+1 
x(ek+2)xk+2 

(a) (b)

S

x*
Central Path

x•

x(ek+1)

x(ek)xk 

xk+1 

x(ek+2)
xk+2 

Short Step method Long Step method 

The methodology generalizes to quadratic pro• 
gramming and convex programming. 



LECTURE 24: REVIEW/EPILOGUE
 

LECTURE OUTLINE
 

Basic concepts of convex analysis • 

Basic concepts of convex optimization • 

Geometric duality framework - MC/MC
• 

Constrained optimization duality - minimax
• 

Subgradients - Optimality conditions • 

Special problem classes • 

Descent/gradient/subgradient methods • 

Polyhedral approximation methods • 



BASIC CONCEPTS OF CONVEX ANALYSIS
 

Epigraphs, level sets, closedness, semicontinuity
• 

f(x)

x
Convex function

f(x)

x
Nonconvex function

Epigraph Epigraphf(x) f(x)

xx

Epigraph Epigraph

Convex function Nonconvex function

dom(f) dom(f)

Finite representations of generated cones and
• 
convex hulls - Caratheodory’s Theorem. 

Relative interior: • 

− Nonemptiness for a convex set
 
− Line segment principle
 
− Calculus of relative interiors
 

Continuity of convex functions • 

Nonemptiness of intersections of nested sequences • 
of closed sets. 

Closure operations and their calculus. • 

Recession cones and their calculus. • 

Preservation of closedness by linear transforma
• 
tions and vector sums. 



HYPERPLANE SEPARATION
 

(a)

C1 C2

x

a

(b)

C1

C2
x1

x2

Separating/supporting hyperplane theorem.
• 

Strict and proper separation theorems. • 

Dual representation of closed convex sets as • 
unions of points and intersection of halfspaces. 

A union of points An intersection of halfspaces

Nonvertical separating hyperplanes. • 



CONJUGATE FUNCTIONS
 

x

Slope = y

0

(−y, 1)

f(x)

inf
x∈"n

{f(x)− x′y} = −f!(y)

Conjugacy theorem: f = f�� • 

Support functions • 

0

y

X

σX(y)/‖y‖

x̂

Polar cone theorem: C = C�� • 

− Special case: Linear Farkas’ lemma 



POLYHEDRAL CONVEXITY 

Extreme points • 

Extreme
Points

Extreme
Points

Extreme
Points

(a) (b) (c)

A closed convex set has at least one extreme • 
point if and only if it does not contain a line. 

Polyhedral sets. • 

Finitely generated cones: C = cone
�
{a1, . . . , ar }

�
• 

Minkowski-Weyl Representation: A set P is• 
polyhedral if and only if 

P = conv
�
{v1, . . . , vm}

� 
+ C, 

for a nonempty finite set of vectors {v1, . . . , vm}
and a finitely generated cone C. 

Fundamental Theorem of LP: Let P be a poly• 
hedral set that has at least one extreme point. A 
linear function that is bounded below over P , at
tains a minimum at some extreme point of P . 



BASIC CONCEPTS OF CONVEX OPTIMIZATION



Weierstrass Theorem and extensions. • 

Characterization of existence of solutions in • 
terms of nonemptiness of nested set intersections.
 

Optimal
Solution

Level Sets of f

X

Role of recession cone and lineality space. • 

Partial Minimization Theorems: Character• 
ization of closedness of f(x) = infz∈�m F (x, z) in 
terms of closedness of F . 

x

z

w

x1

x2

O

F (x, z)

f(x) = inf
z

F (x, z)

epi(f)

x

z

w

x1

x2

O

F (x, z)

f(x) = inf
z

F (x, z)

epi(f)



MIN COMMON/MAX CROSSING DUALITY
 

Min Common Point w*
_w w
M Min Common Point w*

w wMin Common M Min Common
Point w Point∗ w∗

00

(a)

Max Crossing Point q*

M

0

(b)

M

Max Crossing Point q*

u

0

(c)

S

_
M

M
Max Crossing Point q*

Min Common Point w*

w

u

u0 0

0

u u

u

w

M M

M

M
Min Common
Point w∗

Max Crossing
Point q∗

Max Crossing
Point q∗ Max Crossing

Point q∗

(a) (b)

(c)

Defined by a single set M ⊂ � n+1 .• 

•	 w∗ = inf(0,w)∈M w 

	 q∗ = sup q(µ) 
� 

inf(u,w)∈M {w + µ�u}= •	 µ∈�n 

Weak duality: q∗ ≤ w∗ • 

Two key questions: • 

− When does strong duality q∗ = w∗ hold? 
− When do there exist optimal primal and dual 

solutions? 



MC/MC THEOREMS (M CONVEX, W ∗ < )
 

  

�


MC/MC Theorem I: We have q∗ = w∗ if and • 
only if for every sequence 

�
(uk, wk)

� 
⊂ M with 

uk 0, there holds → 

w∗ ≤ lim inf wk. 
k→∞ 

MC/MC Theorem II: Assume in addition that
• 
−∞ < w∗ and that 

D = 
�
u | there exists w ∈ � with (u, w) ∈ M}
 

contains the origin in its relative interior. Then

q∗ = w∗ and there exists µ such that q(µ) = q∗. 

MC/MC Theorem III: Similar to II but in• 
volves special polyhedral assumptions. 

(1)	 M is a “horizontal translation” of M̃ by −P ,


˜M = M − 
�
(u, 0) | u ∈ P 

�
, 

where P : polyhedral and M̃ : convex. 

(2) We have ri(D̃) ∩ P = Ø, where 

˜ ˜D = 
�
u | there exists w ∈ � with (u, w) ∈ M} 



IMPORTANT SPECIAL CASE
 

• Constrained optimization: infx∈X, g(x)≤0 f(x) 

Perturbation function (or primal function)
• 

p(u) = inf f(x),
 
x∈X, g(x)≤u 

0 u

{
(g(x), f(x)) | x ∈ X

}

M = epi(p)

w∗ = p(0)

p(u)

q∗

Introduce L(x, µ) = f(x) + µ�g(x). Then• 

q(µ) = inf 
�
p(u) + µ�u

� 
r 

= 

u∈� 

inf 
�
f(x) + µ�u

� 

u∈�r , x∈X, g(x)≤u � 
infx∈X L(x, µ) if µ ≥ 0,

= −∞ otherwise. 



NONLINEAR FARKAS’ LEMMA


n • Let X ⊂ � , f : X → �, and gj � ,� : X → �
j = 1, . . . , r, be convex. Assume that 

f(x) ≥ 0, ∀ x ∈ X with g(x) ≤ 0


Let 

Q ∗ = 
� 
μ | μ ≥ 0, f(x) + μ′ g(x) ≥ 0, ∀ x ∈ X 

� 
. 

• Nonlinear version: Then Q ∗ is nonempty and 
compact if and only if there exists a vector x ∈ X 
such that gj (x) < 0 for all j = 1, . . . , r.  

0} 
(μ, 1) 

(b) 

0}00}}

(c) 

0} 
(μ, 1) 

(a) 

� 
(g(x), f(x)) | x ∈ X 

� � 
(g(x), f(x)) | x ∈ X 

� � 
(g(x), f(x)) | x ∈ X 

� 

� 
g(x), f(x) 

� 

• Polyhedral version: Q ∗ is nonempty if g is 
linear [g(x) =  Ax − b] and there exists a vector 
x ∈ ri(X) such that Ax − b ≤ 0. 



CONSTRAINED OPTIMIZATION DUALITY
 

minimize f(x) 

subject to x ∈ X, gj (x) ≤ 0, j = 1, . . . , r, 

nwhere X ⊂ � , f : X �→ � and gj : X �→ � are 
convex. Assume f∗: finite. 

Connection with MC/MC: M = epi(p) with• 
p(u) = infx∈X, g(x)≤u f(x) 

Dual function: • 

� 
infx∈X L(x, µ) if µ ≥ 0,

q(µ) = −∞ otherwise 

where L(x, µ) = f(x) + µ�g(x) is the Lagrangian 
function. 

Dual problem of maximizing q(µ) over µ ≥ 0.
• 

Strong Duality Theorem: q∗ = f∗ and there • 
exists dual optimal solution if one of the following
 
two conditions holds: 

(1) There exists x ∈ X such that g(x) < 0. 

(2) The functions gj , j = 1, . . . , r, are affine, and 
there exists x ∈ ri(X) such that g(x) ≤ 0. 



OPTIMALITY CONDITIONS
 

   We have q∗ = f∗, and the vectors x∗ and µ∗ are• 
optimal solutions of the primal and dual problems, 
respectively, iff x∗ is feasible, µ∗ ≥ 0, and 

x∗ ∈ arg min L(x, µ∗), µ∗ 
j gj (x

∗) = 0, ∀ j. 
x∈X 

For the linear/quadratic program • 
1minimize 2 x
�Qx + c�x 

subject to Ax ≤ b, 

where Q is positive semidefinite, (x∗, µ∗) is a pri
mal and dual optimal solution pair if and only if: 

(a) Primal and dual feasibility holds: 

Ax∗ ≤ b, µ∗ ≥ 0 

(b) Lagrangian optimality holds [x∗ minimizes 
L(x, µ∗) over x ∈ � n]. (Unnecessary for LP.) 

(c) Complementary slackness holds: 

(Ax∗ − b)�µ∗ = 0, 

i.e., µ∗j > 0 implies that the jth constraint is tight. 
(Applies to inequality constraints only.) 



FENCHEL DUALITY


imal problem: • Pr

minimize f1(x) + f2(x) 
nsubject to ,
x ∈ � 

n
 n
where f1
 �→ (−∞, ∞] and f2 �→ (−∞, ∞]
 
are closed proper convex functions. 

• Dual problem: 

minimize f1 (λ) + f2 (−λ) 

subject to λ ∈ � n
 ,
 

where f1
 
 and f2
 
 are the conjugates.
 

Slope λ

x∗ x

−f2(x)

q(λ)

f∗ = q∗

−f!
1 (λ)

f!
2 (−λ)



CONIC DUALITY
 

sider minimizing f(x) over x ∈ C, where f :
(−∞, ∞] is a closed proper convex function 
 is a closed convex cone in  n. 

Con• 
n �→ � 

and C �
We apply Fenchel duality with the definitions • 

� 
0 if x ∈ C,

f1(x) = f(x), f2(x) = ∞ if x /∈ C. 

• Linear Conic Programming: 

minimize c�x
 

subject to x − b ∈ S, x ∈ C.
 

The dual linear conic problem is equivalent to • 

minimize b�λ 

ˆsubject to λ − c ∈ S⊥, λ ∈ C. 

• Special Linear-Conic Forms: 

min c�x max b�λ, 
Ax=b, x∈C 

⇐⇒ 
c−A�λ∈Ĉ 

min c�x max b�λ, 
ˆAx−b∈C 

⇐⇒ 
A�λ=c, λ∈C

n m n mwhere x ∈ � , λ ∈ � , c ∈ � , b ∈ � , A : m × n.
 



SUBGRADIENTS
 

f(z)

0

(−g, 1)

(
x, f(x)

)

z

∂f(x) = Ø for x ∈ ri
�
dom(f)

�
. 

Conjugate Subgradient Theorem: If f is closed • 
proper convex, the following are equivalent for a 
pair of vectors (x, y): 

(i) x�y = f(x) + f�(y). 

(ii) y ∈ ∂f(x). 

(iii) x ∈ ∂f�(y). 

• Characterization of optimal solution set X∗ = 
arg minx∈�n f(x) of closed proper convex f : 

(a) X∗ = ∂f�(0). 

(b) X∗ is nonempty if 0 ∈ ri
�
dom(f�)

�
. 

(c) X∗ is nonempty and compact if and only if 
0 ∈ int

�
dom(f�)

�
. 



� � 

� � 
� 

CONSTRAINED OPTIMALITY CONDITION


 Let f : n  ( , ] be proper convex, let X • � �→ −∞ ∞
be a convex subset of �n, and assume that one of 
the following four conditions holds: 

(i) ri dom(f) �∩ ri(X) =  Ø. 

(ii) f is polyhedral and dom(f) ∩ ri(X) =  Ø. 

(iii) X is polyhedral and ri dom(f) ∩ X =� Ø. 

(iv) f and X are polyhedral, and dom(f) ∩ X =� Ø. 

Then, a vector x ∗ minimizes f over X iff there ex
ists g ∈ ∂f(x ∗ ) such that −g belongs to the normal 
cone NX (x ∗ ), i.e., 

g ′(x − x ∗ ) ≥ 0, ∀ x ∈ X. 

Level Sets of f 

x ∗ 

∇f(x ∗) 

Level Sets of f 

x ∗ 

NC (x ∗) 
NC (x ∗) 

C C 
g 

∂f(x ∗) 



COMPUTATION: PROBLEM RANKING IN
 

INCREASING COMPUTATIONAL DIFFICULTY
 

Linear and (convex) quadratic programming.
• 

− Favorable special cases. 

Second order cone programming. • 

Semidefinite programming. • 

Convex programming. • 

− Favorable cases, e.g., separable, large sum. 
− Geometric programming. 

Nonlinear/nonconvex/continuous programming.
• 

− Favorable special cases.
 
− Unconstrained.
 
− Constrained.
 

Discrete optimization/Integer programming
• 

− Favorable special cases. 

Caveats/questions: • 

− Important role of special structures. 
− What is the role of “optimal algorithms”? 
− Is complexity the right philosophical view to 

convex optimization? 



DESCENT METHODS
 

Steepest descent method: Use vector of min • 
norm on −∂f(x); has convergence problems. 

z

x2

x1

-3
-2

-1
0

1
2

3

-3-2-10123

60

-20

0

20

40

x1

x
2

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

• Subgradient method:
 

M

mk

mk + sgk

m*

Level sets of q

mk+1 =PM
 (mk + s gk)

Level sets of f

X
xk

xk − αkgk

xk+1 = PX(xk − αkgk)

x∗

gk

∂f(xk)

Incremental (possibly randomized) variants for • 
minimizing large sums. 

�-descent method: Fixes the problems of steep• 
est descent. 



APPROXIMATION METHODS I 

• Cutting plane: 

x0 x1x2x3

f(x)

X

x

f(x0) + (x− x0)′g0

f(x1) + (x− x1)′g1

x∗

Instability problem: The method can make • 
large moves that deteriorate the value of f . 

Proximal Minimization method: • 

f(x)

xxk+1 x∗
yk

Fk(x)

γk − pk(x)

γk

Proximal-cutting plane-bundle methods: Com• 
binations cutting plane-proximal, with stability 
control of proximal center. 



APPROXIMATION METHODS II
 

• Dual Proximal - Augmented Lagrangian meth
ods: Proximal method applied to the dual prob
lem of a constrained optimization problem. 

γk

γk −
1

2ck
‖x− xk‖2

f(x)

xxk+1xk

x∗

Slope = xk
Slope = xk+1

λk+1

Slope = x∗

δk

δk + x′
kλ− ck

2
‖λ‖2

Primal Proximal Iteration Dual Proximal Iteration

f!(λ)

• Interior point methods:
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