LECTURE 24: REVIEW/EPILOGUE

LECTURE OUTLINE

- Basic concepts of convex analysis
- Basic concepts of convex optimization
- Geometric duality framework MC/MC
- Constrained optimization duality minimax
- Subgradients Optimality conditions
- Special problem classes
- Descent/gradient/subgradient methods
- Polyhedral approximation methods

BASIC CONCEPTS OF CONVEX ANALYSIS

• Epigraphs, level sets, closedness, semicontinuity

Finite representations of generated cones and convex hulls - Caratheodory's Theorem.

- Relative interior:
	- Nonemptiness for a convex set
	- − Line segment principle
	- − Calculus of relative interiors
- Continuity of convex functions
- Nonemptiness of intersections of nested sequences of closed sets.
- Closure operations and their calculus.
- Recession cones and their calculus.
- Preservation of closedness by linear transformations and vector sums.

HYPERPLANE SEPARATION

- Separating/supporting hyperplane theorem.
- Strict and proper separation theorems.
- Dual representation of closed convex sets as unions of points and intersection of halfspaces.

A union of points An intersection of halfspaces

• Nonvertical separating hyperplanes.

CONJUGATE FUNCTIONS

- Conjugacy theorem: $f = f^{\star\star}$
- Support functions

Polar cone theorem: $C = C^{\star\star}$ − Special case: Linear Farkas' lemma

POLYHEDRAL CONVEXITY

• Extreme points

• A closed convex set has at least one extreme point if and only if it does not contain a line.

- Polyhedral sets.
- Finitely generated cones: $C = \text{cone}(\{a_1, \ldots, a_r\})$
- Minkowski-Weyl Representation: A set P is polyhedral if and only if

$$
P = \text{conv}(\{v_1, \ldots, v_m\}) + C,
$$

for a nonempty finite set of vectors $\{v_1, \ldots, v_m\}$ and a finitely generated cone C.

• Fundamental Theorem of LP: Let P be a polyhedral set that has at least one extreme point. A linear function that is bounded below over P, attains a minimum at some extreme point of P.

BASIC CONCEPTS OF CONVEX OPTIMIZATION

- Weierstrass Theorem and extensions.
- Characterization of existence of solutions in terms of nonemptiness of nested set intersections.

- Role of recession cone and lineality space.
- Partial Minimization Theorems: Characterization of closedness of $f(x) = \inf_{z \in \mathbb{R}^m} F(x, z)$ in terms of closedness of F.

MIN COMMON/MAX CROSSING DUALITY

- Defined by a single set $M \subset \mathbb{R}^{n+1}$.
- $w^* = \inf_{(0,w)\in M} w$

•
$$
q^* = \sup_{\mu \in \mathbb{R}^n} q(\mu) \stackrel{\triangle}{=} \inf_{(u,w) \in M} \{w + \mu'u\}
$$

- Weak duality: $q^* \leq w^*$
- Two key questions:
	- $-$ When does strong duality $q^* = w^*$ hold?
	- − When do there exist optimal primal and dual solutions?

MC/MC THEOREMS (\overline{M} CONVEX, $W^* <$)

MC/MC Theorem I: We have $q^* = w^*$ if and only if for every sequence $\{(u_k, w_k)\}\subset M$ with $u_k \rightarrow 0$, there holds

$$
w^* \le \liminf_{k \to \infty} w_k.
$$

• MC/MC Theorem II: Assume in addition that $-\infty < w^*$ and that

 $D = \{u \mid \text{there exists } w \in \Re \text{ with } (u, w) \in M\}$

contains the origin in its relative interior. Then $q^* = w^*$ and there exists μ such that $q(\mu) = q^*$.

• MC/MC Theorem III: Similar to II but involves special polyhedral assumptions.

(1) M is a "horizontal translation" of \tilde{M} by $-P$,

$$
M = \tilde{M} - \{(u, 0) \mid u \in P\},\
$$

where P : polyhedral and \tilde{M} : convex.

(2) We have ri $(D) \cap P \neq \emptyset$, where

 $\tilde{D} = \{u \mid \text{there exists } w \in \Re \text{ with } (u, w) \in \tilde{M} \}$

IMPORTANT SPECIAL CASE

- Constrained optimization: $\inf_{x\in X, g(x)\leq 0} f(x)$
- Perturbation function (or primal function)

$$
p(u) = \inf_{x \in X, \, g(x) \le u} f(x),
$$

Introduce $L(x, \mu) = f(x) + \mu' g(x)$. Then

$$
q(\mu) = \inf_{u \in \mathbb{R}^r} \{p(u) + \mu'u\}
$$

=
$$
\inf_{u \in \mathbb{R}^r, x \in X, g(x) \le u} \{f(x) + \mu'u\}
$$

=
$$
\begin{cases} \inf_{x \in X} L(x, \mu) & \text{if } \mu \ge 0, \\ -\infty & \text{otherwise.} \end{cases}
$$

NONLINEAR FARKAS' LEMMA

• Let $X \subset \mathbb{R}^n$, $f : X \mapsto \mathbb{R}$, and $g_j : X \mapsto \mathbb{R}$,
 $j = 1$, r be convex Assume that $j = 1, \ldots, r$, be convex. Assume that

$$
f(x) \ge 0, \qquad \forall \ x \in X \text{ with } g(x) \le 0
$$

Let

$$
Q^* = \{ \mu \mid \mu \ge 0, \, f(x) + \mu' g(x) \ge 0, \, \forall \, x \in X \}.
$$

• **Nonlinear version:** Then ^Q[∗] is nonempty and compact if and only if there exists a vector $x \in X$ such that $g_i(x) < 0$ for all $j = 1, \ldots, r$.

Polyhedral version: Q^* is nonempty if g is linear $[g(x) = Ax - b]$ and there exists a vector $x \in ri(X)$ such that $Ax - b \leq 0$.

CONSTRAINED OPTIMIZATION DUALITY

minimize $f(x)$

subject to $x \in X$, $g_i(x) \leq 0$, $j = 1, \ldots, r$,

where $X \subset \mathbb{R}^n$, $f: X \mapsto \mathbb{R}$ and $g_j: X \mapsto \mathbb{R}$ are convex. Assume f^* : finite.

• Connection with $MC/MC: M = epi(p)$ with $p(u) = \inf_{x \in X, g(x) \leq u} f(x)$

• Dual function:

$$
q(\mu) = \begin{cases} \inf_{x \in X} L(x, \mu) & \text{if } \mu \ge 0, \\ -\infty & \text{otherwise} \end{cases}
$$

where $L(x, \mu) = f(x) + \mu' g(x)$ is the Lagrangian function.

• **Dual problem** of maximizing $q(\mu)$ over $\mu \geq 0$.

• Strong Duality Theorem: $q^* = f^*$ and there exists dual optimal solution if one of the following two conditions holds:

(1) There exists $x \in X$ such that $g(x) < 0$.

(2) The functions g_j , $j = 1, \ldots, r$, are affine, and there exists $x \in \text{ri}(X)$ such that $g(x) \leq 0$.

OPTIMALITY CONDITIONS

• We have $q^* = f^*$, and the vectors x^* and μ^* are optimal solutions of the primal and dual problems, respectively, iff x^* is feasible, $\mu^* \geq 0$, and

$$
x^* \in \arg\min_{x \in X} L(x, \mu^*), \qquad \mu_j^* g_j(x^*) = 0, \quad \forall \ j.
$$

• For the linear/quadratic program

$$
\begin{array}{ll}\text{minimize} & \frac{1}{2}x'Qx + c'x\\ \text{subject to} & Ax \leq b, \end{array}
$$

where Q is positive semidefinite, (x^*, μ^*) is a primal and dual optimal solution pair if and only if:

(a) Primal and dual feasibility holds:

$$
Ax^* \le b, \qquad \mu^* \ge 0
$$

- (b) Lagrangian optimality holds $[x^*$ minimizes $L(x, \mu^*)$ over $x \in \Re^n$. (Unnecessary for LP.)
- (c) Complementary slackness holds:

$$
(Ax^*-b)'\mu^*=0,
$$

i.e., $\mu_j^* > 0$ implies that the *j*th constraint is tight. (Applies to inequality constraints only.)

FENCHEL DUALITY

• Primal problem:

minimize $f_1(x) + f_2(x)$ subject to $x \in \Re^n$,

where $f_1 : \Re^n \mapsto (-\infty, \infty]$ and $f_2 : \Re^n \mapsto (-\infty, \infty]$ are closed proper convex functions.

• Dual problem:

minimize $f_1^*(\lambda) + f_2^*(-\lambda)$ subject to $\lambda \in \Re^n$,

where f_1^* and f_2^* are the conjugates.

CONIC DUALITY

• Consider minimizing $f(x)$ over $x \in C$, where f : $\mathbb{R}^n \mapsto (-\infty, \infty]$ is a closed proper convex function and C is a closed convex cone in \mathbb{R}^n .

• We apply Fenchel duality with the definitions

$$
f_1(x) = f(x)
$$
, $f_2(x) = \begin{cases} 0 & \text{if } x \in C, \\ \infty & \text{if } x \notin C. \end{cases}$

• Linear Conic Programming:

minimize $c'x$ subject to $x - b \in S$, $x \in C$.

• The **dual linear conic** problem is equivalent to

minimize $b'\lambda$

subject to $\lambda - c \in S^{\perp}, \quad \lambda \in \hat{C}$.

• Special Linear-Conic Forms:

 $\min_{Ax=b, x \in C} c'x \iff \max_{c-A'\lambda \in \hat{C}} b'\lambda,$ $c-A'\lambda\in\hat{C}$ $\min_{Ax-b\in C} c'x \qquad \Longleftrightarrow \qquad \max_{A'\lambda=c, \ \lambda\in\hat{C}} b'\lambda,$ $A'\lambda = c, \lambda \in \hat{C}$

where $x \in \mathbb{R}^n$, $\lambda \in \mathbb{R}^m$, $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $A : m \times n$.

SUBGRADIENTS

 $\partial f(x) = \emptyset$ for $x \in \text{ri}(\text{dom}(f)).$

Conjugate Subgradient Theorem: If f is closed proper convex, the following are equivalent for a pair of vectors (x, y) :

(i)
$$
x'y = f(x) + f^{*}(y)
$$
.

(ii)
$$
y \in \partial f(x)
$$
.

(iii) $x \in \partial f^*(y)$.

• Characterization of optimal solution set $X^* = \arg \min_{x \in \Re^n} f(x)$ of closed proper convex f:

(a)
$$
X^* = \partial f^*(0)
$$
.

(b) X^* is nonempty if $0 \in \text{ri}(\text{dom}(f^*)).$

(c) X^* is nonempty and compact if and only if $0 \in \mathrm{int}(\mathrm{dom}(\overline{f^*}))$.

CONSTRAINED OPTIMALITY CONDITION

• Let $f : \mathbb{R}^n \mapsto (-\infty, \infty]$ be proper convex, let X
be a convex subset of \mathbb{R}^n and assume that one of be a convex subset of \mathbb{R}^n , and assume that one of the following four conditions holds:

(i) $\operatorname{ri}(\operatorname{dom}(f)) \cap \operatorname{ri}(X) \neq \emptyset$.

(ii) f is polyhedral and dom(f) ∩ ri(X) $\neq \emptyset$.

(iii) X is polyhedral and ri $(\text{dom}(f)) \cap X = \emptyset$.

(iv) f and X are polyhedral, and dom(f) $\cap X \neq \emptyset$. Then, a vector x^* minimizes f over X iff there exists $g \in \partial f(x^*)$ such that $-g$ belongs to the normal cone $N_X(x^*)$, i.e.,

$$
g'(x - x^*) \ge 0, \qquad \forall \ x \in X.
$$

COMPUTATION: PROBLEM RANKING IN INCREASING COMPUTATIONAL DIFFICULTY

- Linear and (convex) quadratic programming.
	- − Favorable special cases.
- Second order cone programming.
- Semidefinite programming.
- Convex programming.
	- − Favorable cases, e.g., separable, large sum.
	- − Geometric programming.
- Nonlinear/nonconvex/continuous programming.
	- − Favorable special cases.
	- − Unconstrained.
	- − Constrained.
- • Discrete optimization/Integer programming
	- − Favorable special cases.
- Caveats/questions:
	- − Important role of special structures.
	- − What is the role of "optimal algorithms"?
	- − Is complexity the right philosophical view to convex optimization?

DESCENT METHODS

• Steepest descent method: Use vector of min norm on $-\partial f(x)$; has convergence problems.

• Subgradient method:

• Incremental (possibly randomized) variants for minimizing large sums.

 ϵ -descent method: Fixes the problems of steepest descent.

APPROXIMATION METHODS I

• Cutting plane:

Instability problem: The method can make large moves that deteriorate the value of f .

• Proximal Minimization method:

• Proximal-cutting plane-bundle methods: Combinations cutting plane-proximal, with stability control of proximal center.

APPROXIMATION METHODS II

• Dual Proximal - Augmented Lagrangian methods: Proximal method applied to the dual problem of a constrained optimization problem.

Interior point methods:

6.253 Convex Analysis and Optimization

Spring 2010

For information about citing these materials or our Terms of Use, visit: <http://ocw.mit.edu/terms>.