LECTURE 23

LECTURE OUTLINE

- Interior point methods
- Constrained optimization case Barrier method
- Conic programming cases
- Linear programming Path following

BARRIER METHOD

• Inequality constrained problem

minimize
$$f(x)$$

subject to $x \in X$, $g_j(x) \le 0$, $j = 1, ..., r$,

where f and g_j are real-valued convex and X is closed convex.

• We assume that the interior (relative to X) set

$$S = \{x \in X \mid g_j(x) < 0, j = 1, \dots, r\}$$

is nonempty.

- Note that because S is convex, any feasible point can be approached through S (the Line Segment Principle).
- The barrier method is an approximation method.
- It replaces the indicator function of the constraint set

$$\delta(x \mid \operatorname{cl}(S))$$

by a smooth approximation within the relative interior of S.

BARRIER FUNCTIONS

- Consider a barrier function, that is continuous and goes to ∞ as any one of the constraints $g_j(x)$ approaches 0 from negative values.
- Examples:

$$B(x) = -\sum_{j=1}^{r} \ln\{-g_j(x)\}, \quad B(x) = -\sum_{j=1}^{r} \frac{1}{g_j(x)}.$$

• Barrier method:

$$x^{k} = \arg\min_{x \in S} \{f(x) + \epsilon_{k} B(x)\}, \qquad k = 0, 1, \dots,$$

where the parameter sequence $\{\epsilon_k\}$ satisfies $0 < \epsilon_{k+1} < \epsilon_k$ for all k and $\epsilon_k \to 0$.

BARRIER METHOD - EXAMPLE

minimize $f(x) = \frac{1}{2} ((x^1)^2 + (x^2)^2)$ subject to $2 \le x^1$,

with optimal solution $x^* = (2,0)$.

- Logarithmic barrier: $B(x) = -\ln(x^1 2)$
- We have $x_k = (1 + \sqrt{1 + \epsilon_k}, 0)$ from $x_k \in \arg\min_{x^1 > 2} \{ \frac{1}{2} ((x^1)^2 + (x^2)^2) \epsilon_k \ln(x^1 2) \}$
- As ϵ_k is decreased, the unconstrained minimum x_k approaches the constrained minimum $x^* = (2,0)$.
- As $\epsilon_k \to 0$, computing x_k becomes more difficult because of ill-conditioning (a Newton-like method is essential for solving the approximate problems).

CONVERGENCE

• Every limit point of a sequence $\{x_k\}$ generated by a barrier method is a minimum of the original constrained problem.

Proof: Let $\{x\}$ be the limit of a subsequence $\{x_k\}_{k\in K}$. Since $x_k \in S$ and X is closed, x is feasible for the original problem.

If x is not a minimum, there exists a feasible x^* such that $f(x^*) < f(x)$ and therefore also an interior point $\tilde{x} \in S$ such that $f(\tilde{x}) < f(x)$. By the definition of x_k ,

$$f(x_k) + \epsilon_k B(x_k) \le f(\tilde{x}) + \epsilon_k B(\tilde{x}), \quad \forall k,$$

so by taking limit

$$f(x) + \lim \inf_{k \to \infty, k \in K} \epsilon_k B(x_k) \le f(\tilde{x}) < f(x)$$

Hence $\liminf_{k\to\infty, k\in K} \epsilon_k B(x_k) < 0$.

If $x \in S$, we have $\lim_{k\to\infty, k\in K} \epsilon_k B(x_k) = 0$, while if x lies on the boundary of S, we have by assumption $\lim_{k\to\infty, k\in K} B(x_k) = \infty$. Thus

$$\liminf_{k \to \infty} \epsilon_k B(x_k) \ge 0,$$

- a contradiction.

SECOND ORDER CONE PROGRAMMING

• Consider the SOCP

minimize
$$c'x$$

subject to $A_ix - b_i \in C_i$, $i = 1, ..., m$,

where $x \in \mathbb{R}^n$, c is a vector in \mathbb{R}^n , and for $i = 1, \ldots, m$, A_i is an $n_i \times n$ matrix, b_i is a vector in \mathbb{R}^{n_i} , and C_i is the second order cone of \mathbb{R}^{n_i} .

• We approximate this problem with

minimize
$$c'x + \epsilon_k \sum_{i=1}^m B_i(A_ix - b_i)$$

subject to $x \in \Re^n$,

where B_i is the logarithmic barrier function:

$$B_i(y) = -\ln\left(y_{n_i}^2 - (y_1^2 + \dots + y_{n_i-1}^2)\right), \quad y \in \text{int}(C_i),$$

and $\{\epsilon_k\}$ is a positive sequence with $\epsilon_k \to 0$.

- Essential to use Newton's method to solve the approximating problems.
- Interesting complexity analysis

SEMIDEFINITE PROGRAMMING

• Consider the dual SDP

maximize
$$b'\lambda$$
 subject to $C - (\lambda_1 A_1 + \dots + \lambda_m A_m) \in D$,

where D is the cone of positive semidefinite matrices.

• The logarithmic barrier method uses approximating problems of the form

maximize
$$b'\lambda + \epsilon_k \ln \left(\det(C - \lambda_1 A_1 - \dots - \lambda_m A_m) \right)$$

over all $\lambda \in \mathbb{R}^m$ such that $C - (\lambda_1 A_1 + \cdots + \lambda_m A_m)$ is positive definite.

- Here $\epsilon_k > 0$ and $\epsilon_k \to 0$.
- Furthermore, we should use a starting point such that $C \lambda_1 A_1 \cdots \lambda_m A_m$ is positive definite, and Newton's method should ensure that the iterates keep $C \lambda_1 A_1 \cdots \lambda_m A_m$ within the positive definite cone.

LINEAR PROGRAMS/LOGARITHMIC BARRIER

• Apply logarithmic barrier to the linear program

minimize
$$c'x$$

subject to $Ax = b$, $x \ge 0$,

The method finds for various $\epsilon > 0$,

$$x(\epsilon) = \arg\min_{x \in S} F_{\epsilon}(x) = \arg\min_{x \in S} \left\{ c'x - \epsilon \sum_{i=1}^{n} \ln x_i \right\},$$
 where $S = \left\{ x \mid Ax = b, \ x > 0 \right\}$. We assume that S is nonempty and bounded.

• As $\epsilon \to 0$, $x(\epsilon)$ follows the central path

• All central paths start at the analytic center $x_{\infty} = \arg\min_{x \in S} \left\{ -\sum_{i=1}^{n} \ln x_{i} \right\},$

and end at optimal solutions of (LP).

PATH FOLLOWING W/ NEWTON'S METHOD

• Newton's method for minimizing F_{ϵ} :

$$\tilde{x} = x + \alpha(x - x),$$

where x is the pure Newton iterate

$$x = \arg\min_{Az=b} \left\{ \nabla F_{\epsilon}(x)'(z-x) + \frac{1}{2}(z-x)' \nabla^2 F_{\epsilon}(x)(z-x) \right\}$$

• By straightforward calculation

$$x = x - Xq(x,\epsilon),$$

$$q(x,\epsilon) = \frac{Xz}{\epsilon} - e, \quad e = (1...1)', \quad z = c - A'\lambda,$$
$$\lambda = (AX^2A')^{-1}AX(Xc - \epsilon e),$$

and X is the diagonal matrix with x_i , i = 1, ..., n along the diagonal.

- View $q(x,\epsilon)$ as a "normalized" Newton incement [the Newton increment (x-x) transformed by X^{-1} that maps x into e].
- Consider $||q(x,\epsilon)||$ as a proximity measure of the current point to the point $x(\epsilon)$ on the central path.

KEY RESULTS

- It is sufficient to minimize F_{ϵ} approximately, up to where $||q(x,\epsilon)|| < 1$.
- Fact 1: If x > 0, Ax = b, and $||q(x,\epsilon)|| < 1$,

$$c'x - \min_{Ay=b, y \ge 0} c'y \le \epsilon (n + \sqrt{n}).$$

Defines a "tube of convergence".

- Fact 2: The "termination set" $\{x \mid ||q(x,\epsilon)|| < 1\}$ is part of the region of quadratic convergence.
- Fact 2: If $||q(x,\epsilon)|| < 1$, then the pure Newton iterate x satisfies

$$||q(x,\epsilon)|| \le ||q(x,\epsilon)||^2 < 1.$$

SHORT STEP METHODS

• Idea: Use a single Newton step before changing ϵ (a little bit, so the next point stays within the "tube of convergence").

Proposition Let x > 0, Ax = b, and suppose that for some $\gamma < 1$ we have $||q(x,\epsilon)|| \le \gamma$. Then if $\epsilon = (1 - \delta n^{-1/2})\epsilon$ for some $\delta > 0$,

$$||q(x,\epsilon)|| \le \frac{\gamma^2 + \delta}{1 - \delta n^{-1/2}}.$$

In particular, if

$$\delta \le \gamma (1 - \gamma) (1 + \gamma)^{-1},$$

we have $||q(x,\epsilon)|| \leq \gamma$.

• Can be used to establish nice complexity results; but ϵ must be reduced VERY slowly.

LONG STEP METHODS

- Main features:
 - Decrease ϵ faster than dictated by complexity analysis.
 - Use more than one Newton step per (approximate) minimization.
 - Use line search as in unconstrained Newton's method.
 - Require much smaller number of (approximate) minimizations.

Short Step method

Long Step method

• The methodology generalizes to quadratic programming and convex programming.

MIT OpenCourseWare http://ocw.mit.edu

6.253 Convex Analysis and Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.