LECTURE 22

LECTURE OUTLINE

- Review of Fenchel Duality
- Review of Proximal Minimization
- Dual Proximal Minimization Algorithm
- Augmented Lagrangian Methods

FENCHEL DUALITY FRAMEWORK

• Consider the problem

minimize $f_1(x) + f_2(x)$ subject to $x \in \Re^n$,

where $f_1 : \Re^n \mapsto (-\infty, \infty]$ and $f_2 : \Re^n \mapsto (-\infty, \infty]$ are closed proper convex functions.

• Line of Analysis: Convert to the equivalent problem

minimize $f_1(x_1) + f_2(x_2)$ subject to $x_1 = x_2$, $x_1 \in \text{dom}(f_1)$, $x_2 \in \text{dom}(f_2)$

• Apply convex programming duality for equality constraints and obtain the dual problem

minimize
$$f_1^{\star}(\lambda) + f_2^{\star}(-\lambda)$$

subject to $\lambda \in \Re^n$,

where f_1^* and f_2^* are the conjugates.

• Complete symmetry of primal and dual (after a sign change to convert the dual to minimization).

FENCHEL DUALITY THEOREM

Consider the Fenchel framework:

- (a) If f^* is finite and ri dom $(f_1) \cap$ ri dom $(f_2) \neq \emptyset$, then strong duality holds and there exists at least one dual optimal solution.
- (b) Strong duality holds, and (x^*, λ^*) is a primal and dual optimal solution pair if and only if

$$x^* \in \arg\min_{x \in \Re^n} f_1(x) - x'\lambda^*$$
, $x^* \in \arg\min_{x \in \Re^n} f_2(x) + x'\lambda^*$

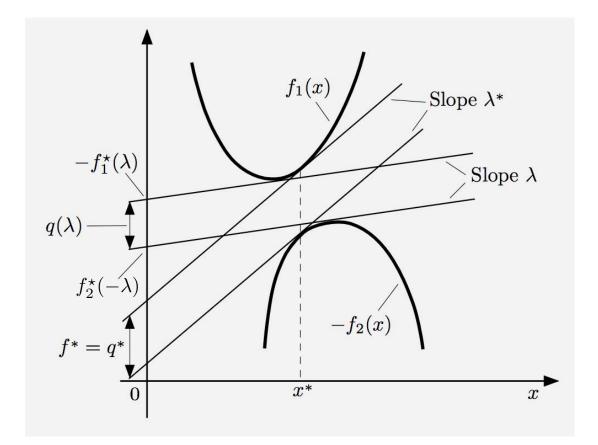
• By Fenchel inequality, the last condition is equivalent to

$$\lambda^* \in \partial f_1(x^*)$$
 [or equivalently $x^* \in \partial f_1^*(\lambda^*)$]

and

$$-\lambda^* \in \partial f_2(x^*)$$
 [or equivalently $x^* \in \partial f_2^*(-\lambda^*)$]

GEOMETRIC INTERPRETATION



• When f_1 and/or f_2 are differentiable, the optimality condition is equivalent to

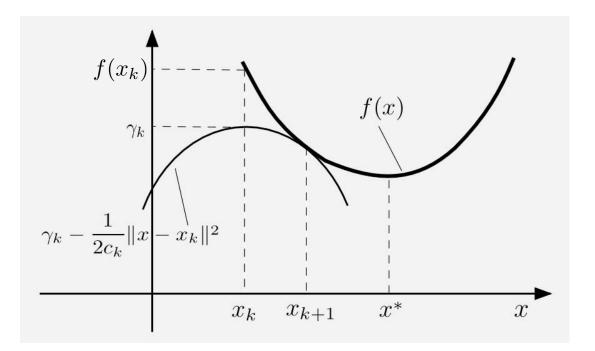
 $\lambda^* = \nabla f_1(x^*)$ and/or $\lambda^* = -\nabla f_2(x^*)$

RECALL PROXIMAL MINIMIZATION

• Applies to minimization of closed convex proper *f*:

$$x_{k+1} = \arg\min_{x \in \Re^n} \quad f(x) + \frac{1}{2c_k} \|x - x_k\|^2$$

where $f : \Re^n \mapsto (-\infty, \infty]$, x_0 is an arbitrary starting point, and $\{c_k\}$ is a positive scalar parameter sequence with $\inf_{k\geq 0} c_k > 0$.



• We have $f(x_k) \to f^*$. Also $x_k \to$ some minimizer of f, provided one exists.

• Finite convergence for polyhedral f.

DUAL PROXIMAL MINIMIZATION

• The proximal iteration can be written in the Fenchel form: $\min_x \{f_1(x) + f_2(x)\}$ with

$$f_1(x) = f(x), \qquad f_2(x) = \frac{1}{2c_k} \|x - x_k\|^2$$

- The Fenchel dual is
 - minimize $f_1^{\star}(\lambda) + f_2^{\star}(-\lambda)$ subject to $\lambda \in \Re^n$

• We have $f_2^{\star}(-\lambda) = -x'_k \lambda + \frac{c_k}{2} \|\lambda\|^2$, so the dual problem is

minimize $f^{\star}(\lambda) - x'_k \lambda + \frac{c_k}{2} \|\lambda\|^2$ subject to $\lambda \in \Re^n$

where f^* is the conjugate of f.

• f_2 is real-valued, so no duality gap.

• Both primal and dual problems have a unique solution, since they involve a closed, strictly convex, and coercive cost function.

DUAL PROXIMAL ALGORITHM

• Can solve the Fenchel-dual problem instead of the primal at each iteration:

$$\lambda_{k+1} = \arg\min_{\lambda \in \Re^n} \quad f^{\star}(\lambda) - x'_k \lambda + \frac{c_k}{2} \|\lambda\|^2 \qquad (1)$$

• Lagragian optimality conditions:

 $x_{k+1} \in \arg \max_{x \in \Re^n} x' \lambda_{k+1} - f(x)$

$$x_{k+1} = \arg\min_{x \in \Re^n} \quad x'\lambda_{k+1} + \frac{1}{2c_k} \|x - x_k\|^2$$

or equivalently,

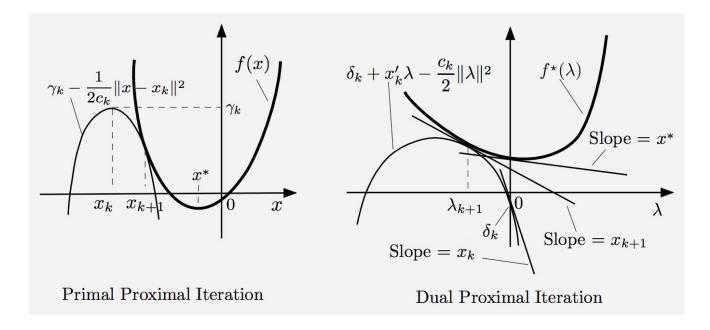
$$\lambda_{k+1} \in \partial f(x_{k+1}), \qquad \lambda_{k+1} = \frac{x_k - x_{k+1}}{c_k}$$

• **Dual algorithm:** At iteration k, obtain λ_{k+1} from the dual proximal minimization (1) and set

$$x_{k+1} = x_k - c_k \lambda_{k+1}$$

• As x_k converges to a primal optimal solution x^* , the dual sequence λ_k converges to 0 (a subgradient of f at x^*).

VISUALIZATION



• The primal and dual implementations are mathematically equivalent and generate identical sequences $\{x_k\}$.

• Which one is preferable depends on whether f or its conjugate f^* has more convenient structure.

• Special case: When -f is the dual function of the constrained minimization $\min_{g(x) \leq 0} F(x)$, the dual algorithm is equivalent to an important general purpose algorithm: the Augmented Lagrangian method.

• This method (to be discussed shortly) aims to find a subgradient of the primal function $p(u) = \min_{g(x) \le u} F(x)$ at u = 0 (i.e., a dual optimal solution).

AUGMENTED LAGRANGIAN METHOD

• Consider the convex constrained problem

$$\begin{array}{ll}\text{minimize} & f(x)\\ \text{subject to} & x \in X, \quad Ex = d \end{array}$$

• Primal and dual functions:

$$p(v) = \inf_{\substack{x \in X, \\ Ex-d=v}} f(x), \ q(\lambda) = \inf_{x \in X} f(x) + \lambda'(Ex-d)$$

- Assume p: closed, so (q, p) are "conjugate" pair.
- Proximal algorithms for maximizing q:

$$\lambda_{k+1} = \arg \max_{\mu \in \Re^m} \quad q(\lambda) - \frac{1}{2c_k} \|\lambda - \lambda_k\|^2$$

$$v_{k+1} = \arg\min_{v \in \Re^m} p(v) + \lambda'_k v + \frac{c_k}{2} \|v\|^2$$

Dual update: $\lambda_{k+1} = \lambda_k + c_k v_{k+1}$

• Implementation:

 $v_{k+1} = Ex_{k+1} - d,$ $x_{k+1} \in \arg\min_{x \in X} L_{c_k}(x, \lambda_k)$

where L_c is the Augmented Lagrangian function

$$L_{c}(x,\lambda) = f(x) + \lambda'(Ex - d) + \frac{c}{2} ||Ex - d||^{2}$$

GRADIENT INTERPRETATION

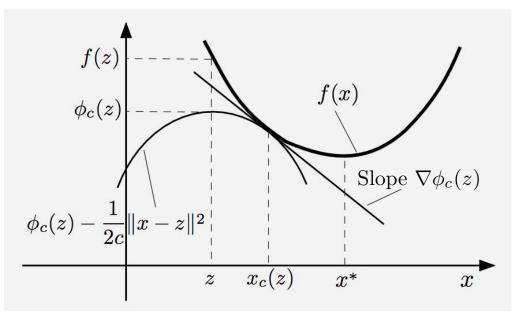
• λ_{k+1} can be viewed as a gradient:

$$\lambda_{k+1} = \frac{x_k - x_{k+1}}{c_k} = \nabla \phi_{c_k}(x_k),$$

where

$$\phi_c(z) = \inf_{x \in \Re^n} \left\{ f(x) + \frac{1}{2c} \|x - z\|^2 \right\}$$

(For geometrical insight, consider the case where f is linear in the following figure.)



• So the dual update $x_{k+1} = x_k - c_k \lambda_{k+1}$ can be viewed as a gradient iteration for minimizing $\phi_c(z)$ (which has the same minima as f).

• The gradient is calculated by the dual proximal minimization. Possibilities for faster methods (e.g., Newton, Quasi-Newton). Useful in augmented Lagrangian methods.

PROXIMAL LINEAR APPROXIMATION

• Convex problem: Min $f : \Re^n \mapsto \Re$ over X.

• Proximal outer linearization method: Same as proximal minimization algorithm, but f is replaced by a cutting plane approximation F_k :

$$x_{k+1} \in \arg\min_{x \in \Re^n} \quad F_k(x) + \frac{1}{2c_k} \|x - x_k\|^2$$

$$\lambda_{k+1} = \frac{x_k - x_{k+1}}{c_k}$$

where $g_i \in \partial f(x_i)$ for $i \leq k$ and

 $F_k(x) = \max f(x_0) + (x - x_0)'g_0, \dots, f(x_k) + (x - x_k)'g_k + \delta_X(x)$

• Proximal Inner Linearization Method (Dual proximal implementation): Let F_k^* be the conjugate of F_k . Set

0-

$$\lambda_{k+1} \in \arg\min_{\lambda \in \Re^n} \quad F_k^{\star}(\lambda) - x_k^{\prime}\lambda + \frac{c_k}{2} \|\lambda\|^2$$
$$x_{k+1} = x_k - c_k \lambda_{k+1}$$

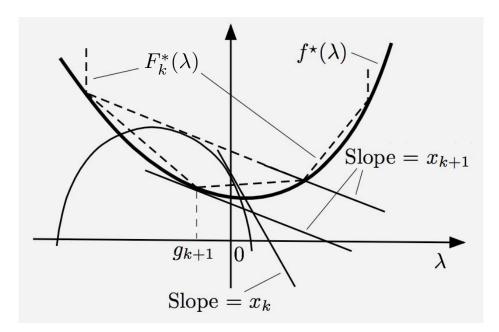
Obtain $g_{k+1} \in \partial f(x_{k+1})$, either directly or via

$$g_{k+1} \in \arg \max_{\lambda \in \Re^n} x'_{k+1} \lambda - f^*(\lambda)$$

• Add g_{k+1} to the outer linearization, or x_{k+1} to the inner linearization, and continue.

PROXIMAL INNER LINEARIZATION

• It is a mathematical equivalent dual to the outer linearization method.



• Here we use the conjugacy relation between outer and inner linearization.

• Versions of these methods where the proximal center is changed only after some "algorithmic progress" is made:

- The outer linearization version is the (standard) bundle method.
- The inner linearization version is an inner approximation version of a bundle method.

6.253 Convex Analysis and Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.