LECTURE 22

LECTURE OUTLINE

- Review of Fenchel Duality
- Review of Proximal Minimization
- Dual Proximal Minimization Algorithm
- Augmented Lagrangian Methods

FENCHEL DUALITY FRAMEWORK

• Consider the problem

minimize $f_1(x) + f_2(x)$ subject to $x \in \Re^n$,

where $f_1 : \Re^n \mapsto (-\infty, \infty]$ and $f_2 : \Re^n \mapsto (-\infty, \infty]$ are closed proper convex functions.

Line of Analysis: Convert to the equivalent problem

minimize $f_1(x_1) + f_2(x_2)$ subject to $x_1 = x_2$, $x_1 \in \text{dom}(f_1)$, $x_2 \in \text{dom}(f_2)$

• Apply convex programming duality for equality constraints and obtain the dual problem

minimize
$$
f_1^*(\lambda) + f_2^*(-\lambda)
$$

subject to $\lambda \in \Re^n$,

where f_1^* and f_2^* are the conjugates.

• Complete symmetry of primal and dual (after a sign change to convert the dual to minimization).

FENCHEL DUALITY THEOREM

Consider the Fenchel framework:

- (a) If f^* is finite and ri dom (f_1) ∩ri dom $(f_2) \neq$ \emptyset , then strong duality holds and there exists at least one dual optimal solution.
- (b) Strong duality holds, and (x^*, λ^*) is a primal and dual optimal solution pair if and only if

$$
x^* \in \arg\min_{x \in \mathbb{R}^n} f_1(x) - x' \lambda^*, \quad x^* \in \arg\min_{x \in \mathbb{R}^n} f_2(x) + x' \lambda^*
$$

• By Fenchel inequality, the last condition is equivalent to

$$
\lambda^* \in \partial f_1(x^*) \qquad \text{[or equivalently } x^* \in \partial f_1^*(\lambda^*)\text{]}
$$

and

$$
-\lambda^* \in \partial f_2(x^*) \qquad \text{[or equivalently } x^* \in \partial f_2^*(-\lambda^*)\text{]}
$$

GEOMETRIC INTERPRETATION

When f_1 and/or f_2 are differentiable, the optimality condition is equivalent to

 $\lambda^* = \nabla f_1(x^*)$ and/or $\lambda^* = -\nabla f_2(x^*)$

RECALL PROXIMAL MINIMIZATION

• Applies to minimization of closed convex proper f:

$$
x_{k+1} = \arg\min_{x \in \mathbb{R}^n} \quad f(x) + \frac{1}{2c_k} \|x - x_k\|^2
$$

where $f : \mathbb{R}^n \mapsto (-\infty, \infty]$, x_0 is an arbitrary starting point, and $\{c_k\}$ is a positive scalar parameter sequence with $\inf_{k>0} c_k > 0$.

We have $f(x_k) \to f^*$. Also $x_k \to$ some minimizer of f , provided one exists.

Finite convergence for polyhedral f .

DUAL PROXIMAL MINIMIZATION

The proximal iteration can be written in the Fenchel form: $\min_x \{f_1(x) + f_2(x)\}$ with

$$
f_1(x) = f(x)
$$
, $f_2(x) = \frac{1}{2c_k} ||x - x_k||^2$

- The Fenchel dual is
	- minimize $f_1^*(\lambda) + f_2^*(-\lambda)$ subject to $\lambda \in \Re^n$

• We have $f_2^*(-\lambda) = -x'_k\lambda + \frac{c_k}{2} ||\lambda||^2$, so the dual problem is

> minimize $f^*(\lambda) - x'_k \lambda +$ $\mathcal{C}_{0}^{(n)}$ $\frac{c_k}{2} \|\lambda\|^2$ subject to $\lambda \in \Re^n$

where f^* is the conjugate of f.

• f_2 is real-valued, so no duality gap.

• Both primal and dual problems have a unique solution, since they involve a closed, strictly convex, and coercive cost function.

DUAL PROXIMAL ALGORITHM

• Can solve the Fenchel-dual problem instead of the primal at each iteration:

$$
\lambda_{k+1} = \arg\min_{\lambda \in \mathbb{R}^n} \quad f^*(\lambda) - x'_k \lambda + \frac{c_k}{2} \|\lambda\|^2 \qquad (1)
$$

• Lagragian optimality conditions:

 $x_{k+1} \in \arg\max_{x \in \Re^n} x'\lambda_{k+1} - f(x)$ $x \in \mathbb{R}^n$

$$
x_{k+1} = \arg\min_{x \in \Re^n} \quad x'\lambda_{k+1} + \frac{1}{2c_k} \|x - x_k\|^2
$$

or equivalently,

$$
\lambda_{k+1} \in \partial f(x_{k+1}), \qquad \lambda_{k+1} = \frac{x_k - x_{k+1}}{c_k}
$$

Dual algorithm: At iteration k, obtain λ_{k+1} from the dual proximal minimization (1) and set

$$
x_{k+1} = x_k - c_k \lambda_{k+1}
$$

• As x_k converges to a primal optimal solution x^* , the dual sequence λ_k converges to 0 (a subgradient of f at x^*).

VISUALIZATION

The primal and dual implementations are mathematically equivalent and generate identical sequences $\{x_k\}.$

Which one is preferable depends on whether f or its conjugate f^* has more convenient structure.

Special case: When $-f$ is the dual function of the constrained minimization $\min_{g(x)<0} F(x)$, the dual algorithm is equivalent to an important general purpose algorithm: the Augmented Lagrangian method.

• This method (to be discussed shortly) aims to find a subgradient of the primal function $p(u) =$ $\min_{g(x)\leq u} F(x)$ at $u=0$ (i.e., a dual optimal solution).

AUGMENTED LAGRANGIAN METHOD

• Consider the convex constrained problem

minimize
$$
f(x)
$$

subject to $x \in X$, $Ex = d$

• Primal and dual functions:

$$
p(v) = \inf_{\substack{x \in X, \\ Ex - d = v}} f(x), \ q(\lambda) = \inf_{x \in X} f(x) + \lambda'(Ex - d)
$$

- Assume p : closed, so (q, p) are "conjugate" pair.
- Proximal algorithms for maximizing q:

$$
\lambda_{k+1} = \arg \max_{\mu \in \mathbb{R}^m} \quad q(\lambda) - \frac{1}{2c_k} \|\lambda - \lambda_k\|^2
$$

$$
v_{k+1} = \arg \min_{v \in \Re^m} \ \ p(v) + \lambda'_k v + \frac{c_k}{2} ||v||^2
$$

Dual update: $\lambda_{k+1} = \lambda_k + c_k v_{k+1}$

• Implementation:

 $v_{k+1} = Ex_{k+1} - d, \qquad x_{k+1} \in \arg\min_{x \in X} L_{c_k}(x, \lambda_k)$ $x \in X$

where L_c is the *Augmented Lagrangian* function

$$
L_c(x, \lambda) = f(x) + \lambda'(Ex - d) + \frac{c}{2} ||Ex - d||^2
$$

GRADIENT INTERPRETATION

• λ_{k+1} can be viewed as a gradient:

$$
\lambda_{k+1} = \frac{x_k - x_{k+1}}{c_k} = \nabla \phi_{c_k}(x_k),
$$

where

$$
\phi_c(z) = \inf_{x \in \Re^n} \left\{ f(x) + \frac{1}{2c} \|x - z\|^2 \right\}
$$

(For geometrical insight, consider the case where f is linear in the following figure.)

So the dual update $x_{k+1} = x_k - c_k \lambda_{k+1}$ can be viewed as a gradient iteration for minimizing $\phi_c(z)$ (which has the same minima as f).

The gradient is calculated by the dual proximal minimization. Possibilities for faster methods (e.g., Newton, Quasi-Newton). Useful in augmented Lagrangian methods.

PROXIMAL LINEAR APPROXIMATION

• Convex problem: Min $f: \Re^n \mapsto \Re$ over X.

• Proximal outer linearization method: Same as proximal minimization algorithm, but f is replaced by a cutting plane approximation F_k :

$$
x_{k+1} \in \arg\min_{x \in \Re^n} \quad F_k(x) + \frac{1}{2c_k} \|x - x_k\|^2
$$

$$
\lambda_{k+1} = \frac{x_k - x_{k+1}}{c_k}
$$

where $g_i \in \partial f(x_i)$ for $i \leq k$ and

 $F_k(x) = \max f(x_0) + (x-x_0)'g_0, \ldots, f(x_k) + (x-x_k)'g_k + \delta_X(x)$

• Proximal Inner Linearization Method (Dual ${\bf proximal\; implementation}$): Let F_k^{\star} be the conjugate of F_k . Set

$$
\lambda_{k+1} \in \arg\min_{\lambda \in \Re^n} F_k^{\star}(\lambda) - x_k' \lambda + \frac{c_k}{2} \|\lambda\|^2
$$

$$
x_{k+1} = x_k - c_k \lambda_{k+1}
$$

Obtain $g_{k+1} \in \partial f(x_{k+1})$, either directly or via

$$
g_{k+1} \in \arg\max_{\lambda \in \Re^n} x'_{k+1}\lambda - f^*(\lambda)
$$

Add g_{k+1} to the outer linearization, or x_{k+1} to the inner linearization, and continue.

PROXIMAL INNER LINEARIZATION

• It is a mathematical equivalent dual to the outer linearization method.

Here we use the conjugacy relation between outer and inner linearization.

• Versions of these methods where the proximal center is changed only after some "algorithmic progress" is made:

- − The outer linearization version is the (standard) bundle method.
- − The inner linearization version is an inner approximation version of a bundle method.

6.253 Convex Analysis and Optimization

Spring 2010

For information about citing these materials or our Terms of Use, visit: <http://ocw.mit.edu/terms>.