LECTURE 20

LECTURE OUTLINE

- Approximation methods
- Cutting plane methods
- Proximal minimization algorithm
- Proximal cutting plane algorithm
- Bundle methods

APPROXIMATION APPROACHES

• Approximation methods replace the original problem with an approximate problem.

• The approximation may be iteratively refined, for convergence to an exact optimum.

- A partial list of methods:
 - Cutting plane/outer approximation.
 - Simplicial decomposition/inner approximation.
 - Proximal methods (including Augmented Lagrangian methods for constrained minimization).
 - Interior point methods.
- A partial list of combination of methods:
 - Combined inner-outer approximation.
 - Bundle methods (proximal-cutting plane).
 - Combined proximal-subgradient (incremental option).

SUBGRADIENTS-OUTER APPROXIMATION

• Consider minimization of a convex function f: $\Re^n \mapsto \Re$, over a closed convex set X.

• We assume that at each $x \in X$, a subgradient g of f can be computed.

• We have

$$f(z) \ge f(x) + g'(z - x), \qquad \forall \ z \in \Re^n,$$

so each subgradient defines a plane (a linear function) that approximates f from below.

• The idea of the outer approximation/cutting plane approach is to build an ever more accurate approximation of f using such planes.

CUTTING PLANE METHOD

• Start with any $x_0 \in X$. For $k \ge 0$, set

$$x_{k+1} \in \arg\min_{x \in X} F_k(x),$$

where

$$F_k(x) = \max\{f(x_0) + (x - x_0)'g_0, \dots, f(x_k) + (x - x_k)'g_k\}$$

and g_i is a subgradient of f at x_i .

• Note that $F_k(x) \leq f(x)$ for all x, and that $F_k(x_{k+1})$ increases monotonically with k. These imply that all limit points of x_k are optimal.

Proof: If $x_k \to x$ then $F_k(x_k) \to f(x)$, [otherwise there would exist a hyperplane strictly separating $\operatorname{epi}(f)$ and $(x, \lim_{k\to\infty} F_k(x_k))$]. This implies that $f(x) \leq \lim_{k\to\infty} F_k(x) \leq f(x)$ for all x. Q.E.D.

CONVERGENCE AND TERMINATION

• We have for all k

$$F_k(x_{k+1}) \le f^* \le \min_{i \le k} f(x_i)$$

• Termination when $\min_{i \leq k} f(x_i) - F_k(x_{k+1})$ comes to within some small tolerance.

• For f polyhedral, we have finite termination with an exactly optimal solution.

• Instability problem: The method can make large moves that deteriorate the value of f.

• Starting from the exact minimum it typically moves away from that minimum.

VARIANTS

• Variant I: Simultaneously with f, construct polyhedral approximations to X.

• Variant II: Central cutting plane methods

• Variant III: Proximal methods - to be discussed next.

PROXIMAL/BUNDLE METHODS

• Aim to reduce the instability problem at the expense of solving a more difficult subproblem.

• A general form:

$$x_{k+1} \in \arg\min_{x \in X} \{F_k(x) + p_k(x)\}$$
$$F_k(x) = \max\{f(x_0) + (x - x_0)'g_0, \dots, f(x_k) + (x - x_k)'g_k\}$$
$$p_k(x) = \frac{1}{2c_k} \|x - y_k\|^2$$

where c_k is a positive scalar parameter.

• We refer to $p_k(x)$ as the proximal term, and to its center y_k as the proximal center.

PROXIMAL MINIMIZATION ALGORITHM

• Starting point for analysis: A general algorithm for convex function minimization

$$x_{k+1} \in \arg\min_{x \in \Re^n} \left\{ f(x) + \frac{1}{2c_k} \|x - x_k\|^2 \right\}$$

- $f: \Re^n \mapsto (-\infty, \infty]$ is closed proper convex
- $-c_k$ is a positive scalar parameter
- $-x_0$ is arbitrary starting point

• Convergence mechanism:

$$\gamma_k = f(x_{k+1}) + \frac{1}{2c_k} \|x_{k+1} - x_k\|^2 < f(x_k).$$

Cost improves by at least $\frac{1}{2c_k} ||x_{k+1} - x_k||^2$, and this is sufficient to guarantee convergence.

RATE OF CONVERGENCE I

• Role of penalty parameter c_k :

• Role of growth properties of f near optimal solution set:

RATE OF CONVERGENCE II

• Assume that for some scalars $\beta > 0$, $\delta > 0$, and $\alpha \ge 1$,

 $f^* + \beta (d(x))^{\alpha} \le f(x), \quad \forall \ x \in \Re^n \text{ with } d(x) \le \delta$

where

$$d(x) = \min_{x^* \in X^*} \|x - x^*\|$$

i.e., growth of order α from optimal solution set $X^*.$

• If $\alpha = 2$ and $\lim_{k \to \infty} c_k = \overline{c}$, then

$$\limsup_{k \to \infty} \frac{d(x_{k+1})}{d(x_k)} \le \frac{1}{1 + \beta \overline{c}}$$

linear convergence.

• If $1 < \alpha < 2$, then

$$\limsup_{k \to \infty} \frac{d(x_{k+1})}{\left(d(x_k)\right)^{1/(\alpha-1)}} < \infty$$

superlinear convergence.

FINITE CONVERGENCE

• Assume growth order $\alpha = 1$:

 $f^* + \beta d(x) \le f(x), \qquad \forall \ x \in \Re^n,$

e.g., f is polyhedral.

• Method converges finitely (in a single step for c_0 sufficiently large).

PROXIMAL CUTTING PLANE METHODS

Same as proximal minimization algorithm, but
f is replaced by a cutting plane approximation
F_k:

$$x_{k+1} \in \arg\min_{x \in X} \left\{ F_k(x) + \frac{1}{2c_k} \|x - x_k\|^2 \right\}$$

where

$$F_k(x) = \max\{f(x_0) + (x - x_0)'g_0, \dots, f(x_k) + (x - x_k)'g_k\}$$

- Drawbacks:
 - (a) Hard stability tradeoff: For large enough c_k and polyhedral X, x_{k+1} is the exact minimum of F_k over X in a single minimization, so it is identical to the ordinary cutting plane method. For small c_k convergence is slow.
 - (b) The number of subgradients used in F_k may become very large; the quadratic program may become very time-consuming.
- These drawbacks motivate algorithmic variants, called *bundle methods*.

BUNDLE METHODS

• Allow a proximal center $y_k \neq x_k$:

$$x_{k+1} \in \arg\min_{x \in X} \left\{ F_k(x) + p_k(x) \right\}$$

$$F_k(x) = \max\left\{f(x_0) + (x - x_0)'g_0, \dots, f(x_k) + (x - x_k)'g_k\right\}$$
$$p_k(x) = \frac{1}{2c_k} \|x - y_k\|^2$$

• Null/Serious test for changing y_k : For some fixed $\beta \in (0, 1)$

$$y_{k+1} = \begin{cases} x_{k+1} & \text{if } f(y_k) - f(x_{k+1}) \ge \beta \delta_k, \\ y_k & \text{if } f(y_k) - f(x_{k+1}) < \beta \delta_k, \end{cases}$$
$$\delta_k = f(y_k) - \left(F_k(x_{k+1}) + p_k(x_{k+1}) \right) > 0$$

MIT OpenCourseWare http://ocw.mit.edu

6.253 Convex Analysis and Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.