LECTURE 19

LECTURE OUTLINE

- Return to descent methods
- Fixing the convergence problem of steepest descent
- ϵ -descent method
- Extended monotropic programming

IMPROVING STEEPEST DESCENT

• Consider minimization of a convex function f : $\mathbb{R}^n \mapsto \mathbb{R}$, over a closed convex set X.

• Return to iterative descent: Generate $\{x_k\}$ with

$$
f(x_{k+1}) < f(x_k)
$$

(unless x_k is optimal).

• If f is differentiable, the gradient/steepest descent method is

$$
x_{k+1} = x_k - \alpha_k \nabla f(x_k)
$$

Has good convergence for α_k sufficiently small or optimally chosen.

If f is nondifferentiable, the steepest descent method is

$$
x_{k+1} = x_k - \alpha_k g_k
$$

where g_k is the vector of minimum norm on $\partial f(x_k)$... but has convergence difficulties.

• We will discuss another method, called ϵ -descent:

$$
x_{k+1} = x_k - \alpha_k g_k
$$

where g_k is the vector of minimum norm on $\partial_{\epsilon} f(x_k)$. It fixes the convergence difficulties.

REVIEW OF ϵ -SUBGRADIENTS

• For a proper convex $f : \mathbb{R}^n \mapsto (-\infty, \infty]$ and $\epsilon > 0$, we say that a vector g is an ϵ -subgradient of f at a point $x \in \text{dom}(f)$ if

$$
f(z) \ge f(x) + (z - x)'g - \epsilon, \qquad \forall \ z \in \Re^n
$$

The ϵ -subdifferential $\partial_{\epsilon} f(x)$ is the set of all ϵ subgradients of f at x. By convention, $\partial_{\epsilon} f(x) = \emptyset$ for $x \notin \text{dom}(f)$.

• We have $\bigcap_{\epsilon \downarrow 0} \partial_{\epsilon} f(x) = \partial f(x)$ and

$$
\partial_{\epsilon_1} f(x) \subset \partial_{\epsilon_2} f(x) \quad \text{if } 0 < \epsilon_1 < \epsilon_2
$$

ϵ -SUBGRADIENTS AND CONJUGACY

• For any $x \in \text{dom}(f)$, consider x-translation of f , i.e., the function f_x given by

$$
f_x(d) = f(x + d) - f(x), \qquad \forall \ d \in \Re^n
$$

and its conjugate

$$
f_x^{\star}(g) = \sup_{d \in \mathbb{R}^n} \{ d'g - f(x+d) + f(x) \} = f^{\star}(g) + f(x) - g'x
$$

• We have

$$
g \in \partial f(x)
$$
 iff $\sup_{d \in \mathbb{R}^n} \{d'g - f(x+d) + f(x)\} \le 0$,

so $\partial f(x)$ is the 0-level set of f_x^* :

$$
\partial f(x) = \{ g \mid f_x^{\star}(g) \le 0 \}.
$$

Similarly, $\partial_{\epsilon} f(x)$ is the ϵ -level set of f_x^* :

$$
\partial_{\epsilon} f(x) = \left\{ g \mid f_x^{\star}(g) \le \epsilon \right\}
$$

ϵ -SUBDIFFERENTIALS AS LEVEL SETS

We have

 $\partial_{\epsilon} f(x) = \{ g \mid f^{\star}(g) + f(x) - g'x \leq \epsilon \} = \{ g \mid f_x^{\star}(g) \leq \epsilon \}$

• If f is closed

$$
\sup_{g \in \mathbb{R}^n} \{-f_x^{\star}(g)\} = f_x^{\star \star}(0) = f_x(0) = 0
$$

so $\partial_{\epsilon} f(x) \neq \emptyset$ for every $x \in \text{dom}(f)$ and $\epsilon > 0$.

PROPERTIES OF ϵ -SUBDIFFERENTIALS

- Let f: closed proper convex, $x \in \text{dom}(f), \epsilon > 0$.
- Then $\partial_{\epsilon} f(x)$ is nonempty and closed.

• $\partial_{\epsilon} f(x)$ is compact iff f_x^{\star} has no nonzero directions of recession. True if f is real-valued or $x \in \text{int}(\text{dom}(f))$ [support fn of $\text{dom}(f_x)$ is recession fn of f_x^* .

In one dimension: $g \in \partial_{\epsilon} f(x)$ i ff $f(x + \alpha d) \ge$ $f(x) - \epsilon + \alpha d'g$ for all $d \in \mathbb{R}^n$ and $\alpha > 0$.

• So $g \in \partial_{\epsilon} f(x)$ iff the line with slope $d'g$ that passes through $f(x) - \epsilon$ lies under $f(x + \alpha d)$.

Therefore,

$$
\sup_{g \in \partial_{\epsilon} f(x)} d'g = \inf_{\alpha > 0} \frac{f(x + \alpha d) - f(x) + \epsilon}{\alpha}
$$

This formula for the support function $\sigma_{\partial_{\epsilon} f(x)}(d)$ can be shown also in multiple dimensions.

ϵ -DESCENT PROPERTIES

• For f: closed proper convex, by definition, $0 \in$ $\partial_{\epsilon} f(x)$ i ff

$$
f(x) \le \inf_{z \in \mathbb{R}^n} f(z) + \epsilon
$$

• For f : closed proper convex and $d \in \mathbb{R}^n$,

$$
\sup_{g \in \partial_{\epsilon} f(x)} d'g = \inf_{\alpha > 0} \frac{f(x + \alpha d) - f(x) + \epsilon}{\alpha}
$$

so

 $\inf_{\alpha>0} f(x+\alpha d) < f(x) - \epsilon$ iff $\sup_{\alpha>0} d'g < 0$ $g\in\partial_{\epsilon}f(x)$

• If $0 \notin \partial_{\epsilon} f(x)$, we have $\sup_{g \in \partial_{\epsilon} f(x)} d'g < 0$ for

$$
g = \arg\min_{g \in \partial_{\epsilon} f(x)} \|g\|,
$$

(Projection Th.), so $\inf_{\alpha>0} f(x-\alpha g) < f(x) - \epsilon$.

ϵ -DESCENT METHOD

Method to minimize closed proper convex f :

$$
x_{k+1} = x_k - \alpha_k g_k
$$

where

$$
-g_k = \arg\min_{g \in \partial_{\epsilon} f(x_k)} \|g\|,
$$

and α_k is a positive stepsize.

If $g_k = 0$, i.e., $0 \in \partial_{\epsilon} f(x_k)$, then x_k is an ϵ optimal solution.

• If $g_k \neq 0$, choose α_k that reduces the cost function by at least ϵ , i.e.,

$$
f(x_{k+1}) = f(x_k - \alpha_k g_k) \le f(x_k) - \epsilon
$$

Drawback: Must know $\partial_{\epsilon} f(x_k)$.

Motivation for a variant where $\partial_{\epsilon} f(x_k)$ is approximated by a set $A(x_k)$ that can be computed more easily than $\partial_{\epsilon} f(x_k)$.

• Then use

$$
g_k = \arg\min_{g \in A(x_k)} \|g\|,
$$

[project on $A(x_k)$ rather than $\partial_{\epsilon} f(x_k)$].

ϵ -DESCENT - OUTER APPROXIMATION

Here $\partial_{\epsilon} f(x_k)$ is approximated by a set $A(x)$ such that

$$
\partial_{\epsilon} f(x_k) \subset A(x_k) \subset \partial_{\gamma \epsilon} f(x_k),
$$

where γ is a scalar with $\gamma > 1$.

- Then the method terminates with a $\gamma \epsilon$ -optimal solution, and effects at least ϵ -reduction on f otherwise.
- Example of outer approximation for sum case

$$
f=f_1+\cdots+f_m
$$

Take

$$
A(x) = cl(\partial_{\epsilon} f_1(x) + \cdots + \partial_{\epsilon} f_m(x)),
$$

based on the fact

$$
\partial_{\epsilon} f(x) \subset cl(\partial_{\epsilon} f_1(x) + \cdots + \partial_{\epsilon} f_m(x)) \subset \partial_{m\epsilon} f(x)
$$

• Application to separable problems where each $\partial_{\epsilon} f_i(x)$ is a one-dimensional interval. Then to find an ϵ -descent direction, we must solve a quadratic programming/projection problem.

EXTENDED MONOTROPIC PROGRAMMING

• Let $- x = (x_1, \ldots, x_m)$ with $x_i \in \Re^{n_i}$ $- f_i : \Re^{n_i} \mapsto (-\infty, \infty]$ is closed proper convex $- S$ is a subspace of $\Re^{n_1+\cdots+n_m}$

• Extended monotropic programming problem:

minimize
$$
\sum_{i=1}^{m} f_i(x_i)
$$
subject to
$$
x \in S
$$

- Monotropic programming is the special case where each x_i is 1-dimensional.
- Models many important optimization problems (linear, quadratic, convex network, etc).
- Has a powerful symmetric duality theory.

DUALITY

• Convert to the equivalent form

minimize
$$
\sum_{i=1}^{m} f_i(z_i)
$$

$$
\sum_{i=1}^m f_i(z_i)
$$

subject to $z_i = x_i$, $i = 1, ..., m$, $x \in S$

Assigning a dual vector $\lambda_i \in \mathbb{R}^{n_i}$ to the constraint $z_i = x_i$, the dual function is

$$
q(\lambda) = \inf_{x \in S} \lambda' x + \sum_{i=1}^{m} \inf_{z_i \in \Re^{n_i}} \{ f_i(z_i) - \lambda'_i z_i \}
$$

=
$$
\begin{cases} \sum_{i=1}^{m} q_i(\lambda_i) & \text{if } \lambda \in S^{\perp}, \\ -\infty & \text{otherwise}, \end{cases}
$$

where $q_i(\lambda_i) = \inf_{z_i \in \Re} \{ f_i(z_i) - \lambda'_i z_i \} = -f_i^{\star}(\lambda_i).$

The dual problem is the (symmetric) extended monotropic program

$$
\begin{array}{ll}\text{minimize} & \sum_{i=1}^{m} f_i^{\star}(\lambda_i) \\ \text{subject to} & \lambda \in S^{\perp} \end{array}
$$

OPTIMALITY CONDITIONS

Assume that $-\infty < q^* = f^* < \infty$. Then (x^*, λ^*) are optimal primal and dual solution pair if and only if

 $x^* \in S, \lambda$ * $\in S^{\perp}, \qquad \lambda_i^* \in \partial f_i(x_i^*), \quad \forall i$

• Specialization to the monotropic case $(n_i =$ 1 for all *i*): The vectors x^* and λ^* are optimal primal and dual solution pair if and only if

$$
x^* \in S, \lambda
$$
 $* \in S^{\perp}, \qquad (x_i^*, \lambda_i^*) \in \Gamma_i, \forall i$

where

$$
\Gamma_i = \left\{ (x_i, \lambda_i) \mid x_i \in \text{dom}(f_i), \, f_i^-(x_i) \le \lambda_i \le f_i^+(x_i) \right\}
$$

Interesting application of these conditions to electrical networks.

STRONG DUALITY THEOREM

• Assume that the extended monotropic programming problem is feasible, and that for all feasible solutions x , the set

$$
S^{\perp} + \partial_{\epsilon} D_{1,\epsilon}(x) + \cdots + D_{m,\epsilon}(x)
$$

is closed for all $\epsilon > 0$, where

$$
D_{i,\epsilon}(x) = \{(0,\ldots,0,\lambda_i,0,\ldots,0) \mid \lambda_i \in \partial_{\epsilon} f_i(x_i)\}
$$

Then $q^* = f^*$.

• An unusual duality condition. It is satisfied if each set $\partial_{\epsilon} f_i(x)$ is either compact or polyhedral. Proof is also unusual - uses the ϵ -descent method!

Monotropic programming case: If $n_i = 1$, $D_{i,\epsilon}(x)$ is an interval, so it is polyhedral, and $q^* =$ f^* .

• There are some other cases of interest. See the text.

The monotropic duality result extends to convex separable problems with nonlinear constraints. (Hard to prove ...)

MIT OpenCourseWare <http://ocw.mit.edu>

6.253 Convex Analysis and Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: <http://ocw.mit.edu/terms>.