LECTURE 18

LECTURE OUTLINE

- Approximate subgradient methods
- ϵ -subdifferential
- $\bullet\,$ $\epsilon\text{-subgradient}$ methods
- Incremental subgradient methods

APPROXIMATE SUBGRADIENT METHODS

• Consider minimization of

$$
f(x) = \sup_{z \in Z} \phi(x, z)
$$

where $Z \subset \mathbb{R}^m$ and $\phi(\cdot, z)$ is convex for all $z \in Z$ (dual minimization is a special case).

• To compute subgradients of f at $x \in \text{dom}(f)$, we find $z_x \in Z$ attaining the supremum above. Then

$$
g_x \in \partial \phi(x, z_x) \qquad \Rightarrow \qquad g_x \in \partial f(x)
$$

- Two potential areas of difficulty:
	- − For subgradient method, we need to solve exactly the above maximization over $z \in Z$.
	- − For steepest descent, we need all the subgradients, and then there are convergence difficulties to contend with.

• In this lecture we address the first difficulty, in the next lecture the second.

• We consider methods that use "approximate" subgradients.

ϵ -SUBDIFFERENTIAL

• We enlarge $\partial f(x)$ so that we take into account "nearby" subgradients.

Fot a proper convex $f : \mathbb{R}^n \mapsto (-\infty, \infty]$ and $\epsilon > 0$, we say that a vector g is an ϵ -subgradient of f at a point $x \in \text{dom}(f)$ if

$$
f(z) \ge f(x) + (z - x)'g - \epsilon, \qquad \forall \ z \in \Re^n
$$

The ϵ -subdifferential $\partial_{\epsilon} f(x)$ is the set of all ϵ subgradients of f at x. By convention, $\partial_{\epsilon} f(x) = \emptyset$ for $x \notin \text{dom}(f)$.

• We have $\bigcap_{\epsilon \downarrow 0} \partial_{\epsilon} f(x) = \partial f(x)$ and

 $\partial_{\epsilon_1} f(x) \subset \partial_{\epsilon_2} f(x)$ if $0 < \epsilon_1 < \epsilon_2$

PROPERTIES OF ϵ -SUBDIFFERENTIALS

Assume that f is closed proper convex, $\epsilon > 0$.

 $\partial_{\epsilon} f(x)$ is nonempty and closed for all $x \in$ $dom(f)$. (Use nonvertical separating hyperplane theorem.)

• $\partial_{\epsilon} f(x)$ is compact iff $x \in \text{int}(\text{dom}(f))$. True in particular, if f is real-valued.

• Neighborhood/continuity property: Subgradients at nearby points are ϵ -subgradients at given point (for sufficiently large ϵ).

The support function of $\partial_{\epsilon} f(x)$ is

$$
\sigma_{\partial_{\epsilon}f(x)}(y) = \sup_{g \in \partial_{\epsilon}f(x)} y'g = \inf_{\alpha > 0} \frac{f(x + \alpha y) - f(x) + \epsilon}{\alpha}
$$

CALCULATION OF AN ϵ -SUBGRADIENT

• Consider minimization of

$$
f(x) = \sup_{z \in Z} \phi(x, z), \tag{1}
$$

where $x \in \mathbb{R}^n$, $z \in \mathbb{R}^m$, Z is a subset of \mathbb{R}^m , and $\phi : \Re^n \times \Re^m \mapsto (-\infty, \infty]$ is a function such that $\phi(\cdot, z)$ is convex and closed for each $z \in Z$.

• How to calculate ϵ -subgradient at $x \in \text{dom}(f)$?

Let $z_x \in Z$ attain the supremum within $\epsilon \geq 0$ in Eq. (1), and let g_x be some subgradient of the convex function $\phi(\cdot, z_x)$.

• For all $y \in \mathbb{R}^n$, using the subgradient inequality,

$$
f(y) = \sup_{z \in Z} \phi(y, z) \ge \phi(y, z_x)
$$

$$
\ge \phi(x, z_x) + g'_x(y - x) \ge f(x) - \epsilon + g'_x(y - x)
$$

i.e., g_x is an ϵ -subgradient of f at x, so

$$
\phi(x, z_x) \ge \sup_{z \in Z} \phi(x, z) - \epsilon \text{ and } g_x \in \partial \phi(x, z_x)
$$

$$
\Rightarrow \qquad g_x \in \partial_{\epsilon} f(x)
$$

ϵ -SUBGRADIENT METHOD

• Can be viewed as an approximate subgradient method, using an ϵ -subgradient in place of a subgradient.

• Problem: Minimize convex $f: \mathbb{R}^n \mapsto \mathbb{R}$ over a closed convex set X.

• Method:

$$
x_{k+1} = P_X(x_k - \alpha_k g_k)
$$

where g_k is an ϵ_k -subgradient of f at x_k , α_k is a positive stepsize, and $P_X(\cdot)$ denotes projection on X .

• Can be viewed as subgradient method with "errors".

CONVERGENCE ANALYSIS

• Basic inequality: If $\{x_k\}$ is the ϵ -subgradient method sequence, for all $y \in X$ and $k \geq 0$

$$
||x_{k+1}-y||^2 \le ||x_k-y||^2 - 2\alpha_k \left(f(x_k) - f(y) - \epsilon_k\right) + \alpha_k^2 ||g_k||
$$

• Replicate the entire convergence analysis for subgradient methods, but carry along the ϵ_k terms.

• Example: Constant $\alpha_k \equiv \alpha$, constant $\epsilon_k \equiv \epsilon$. Assume $||g_k|| \leq c$ for all k. For any optimal x^* ,

$$
||x_{k+1} - x^*||^2 \le ||x_k - x^*||^2 - 2\alpha \left(f(x_k) - f^* - \epsilon\right) + \alpha^2 c^2,
$$

so the distance to x^* decreases if

$$
0 < \alpha < \frac{2\big(f(x_k) - f^* - \epsilon\big)}{c^2}
$$

or equivalently, if x_k is outside the level set

$$
\left\{ x \mid f(x) \le f^* + \epsilon + \frac{\alpha c^2}{2} \right\}
$$

• Example: If $\alpha_k \to 0$, $\sum_k \alpha_k \to \infty$, and $\epsilon_k \to \epsilon$, we get convergence to the ϵ -optimal set.

INCREMENTAL SUBGRADIENT METHODS

• Consider minimization of sum

$$
f(x) = \sum_{i=1}^{m} f_i(x)
$$

• Often arises in duality contexts with $m:$ very large (e.g., separable problems).

Incremental method moves x along a subgradient g_i of a component function f_i NOT the (expensive) subgradient of f, which is $\sum_i g_i$.

• View an iteration as a cycle of m subiterations, one for each component f_i .

• Let x_k be obtained after k cycles. To obtain x_{k+1} , do one more cycle: Start with $\psi_0 = x_k$, and set $x_{k+1} = \psi_m$, after the m steps

$$
\psi_i = P_X(\psi_{i-1} - \alpha_k g_i), \qquad i = 1, \ldots, m
$$

with g_i being a subgradient of f_i at ψ_{i-1} .

Motivation is faster convergence. A cycle can make much more progress than a subgradient iteration with essentially the same computation.

CONNECTION WITH ϵ -SUBGRADIENTS

Neighborhood property: If x and x are "near" each other, then subgradients at x can be viewed as ϵ -subgradients at x, with ϵ "small."

• If $g \in \partial f(x)$, we have for all $z \in \mathbb{R}^n$,

$$
f(z) \ge f(x) + g'(z - x)
$$

\n
$$
\ge f(x) + g'(z - x) + f(x) - f(x) + g'(x - x)
$$

\n
$$
\ge f(x) + g'(z - x) - \epsilon,
$$

where $\epsilon = |f(x) - f(x)| + ||g|| \cdot ||x - x||$. Thus, $g \in \partial_{\epsilon} f(x)$, with ϵ : small when x is near x.

• The incremental subgradient iter. is an ϵ -subgradient iter. with $\epsilon = \epsilon_1 + \cdots + \epsilon_m$, where ϵ_i is the "error" in *i*th step in the cycle (ϵ_i : Proportional to α_k).

• Use

$$
\partial_{\epsilon_1} f_1(x) + \cdots + \partial_{\epsilon_m} f_m(x) \subset \partial_{\epsilon} f(x),
$$

where $\epsilon = \epsilon_1 + \cdots + \epsilon_m$, to approximate the ϵ subdifferential of the sum $f = \sum_{i=1}^{m} f_i$.

• Convergence to optimal if $\alpha_k \to 0$, $\sum_k \alpha_k \to \infty$.

CONVERGENCE OF INCREMENTAL SUBGR.

• Problem

$$
\min_{x \in X} \sum_{i=1}^{m} f_i(x)
$$

• Incremental subgradient method

$$
x_{k+1} = \psi_{m,k}, \quad \psi_{i,k} = [\psi_{i-1,k} - \alpha_k g_{i,k}]^+, i = 1, \dots, m
$$

starting with $\psi_{0,k} = x_k$, where $g_{i,k}$ is a subgradient of f_i at $\psi_{i-1,k}$.

- Analysis parallels/extends the one for nonincremental subgradient methods
- **Key Lemma:** For all $y \in X$ and k ,

$$
||x_{k+1} - y||^2 \le ||x_k - y||^2 - 2\alpha_k (f(x_k) - f(y)) + \alpha_k^2 C^2,
$$

where $C = \sum_{i=1}^m C_i$ and

$$
C_i = \sup_k \{||g|| \mid g \in \partial f_i(x_k) \cup \partial f_i(\psi_{i-1,k})\}
$$

ERROR BOUND: CONSTANT STEPSIZE

• For $\alpha_k \equiv \alpha$, we have

$$
\inf_{k \ge 0} f(x_k) \le f^* + \frac{\alpha C^2}{2} \le f^* + \frac{\alpha m^2 C_0^2}{2}
$$

where

$$
C_0=\max\{C_1,\ldots,C_m\}
$$

is the max component subgradient bound. (Comparable error to the nonincremental method.)

• Sharpness of the estimate: There are problems for which the upper bound is (almost) sharp with cyclic order of processing the component functions (see the end-of-chapter problems).

• Lower bound on the error: There is a problem, where even with best processing order,

$$
f^* + \frac{\alpha m C_0^2}{2} \le \inf_{k \ge 0} f(x_k)
$$

where

$$
C_0=\max\{C_1,\ldots,C_m\}
$$

• Question: Is it possible to improve the upper bound by optimizing the order of processing the component functions?

RANDOMIZED ORDER METHODS

$$
x_{k+1} = [x_k - \alpha_k g(\omega_k, x_k)]^+
$$

where ω_k is a random variable taking equiprobable values from the set $\{1, \ldots, m\}$, and $g(\omega_k, x_k)$ is a subgradient of the component f_{ω_k} at x_k .

- Assumptions:
	- (a) $\{\omega_k\}$ is a sequence of independent random variables. Furthermore, the sequence $\{\omega_k\}$ is independent of the sequence $\{x_k\}.$
	- (b) The set of subgradients $\{g(\omega_k, x_k) \mid k =$ $0, 1, \ldots\}$ is bounded, i.e., there exists a positive constant C_0 such that with prob. 1

$$
||g(\omega_k, x_k)|| \le C_0, \qquad \forall \ k \ge 0
$$

- Stepsize Rules:
	- $-$ Constant: $\alpha_k \equiv \alpha$
	- Diminishing: $\sum_k \alpha_k = \infty$, $\sum_k (\alpha_k)^2 < \infty$
	- − Dynamic

RANDOMIZED METHOD W/ CONSTANT STEP

• With probability 1

$$
\inf_{k \ge 0} f(x_k) \le f^* + \frac{\alpha m C_0^2}{2}
$$

A better/sharp error bound!

Proof: By adapting key lemma, for all $y \in X$, k

$$
||x_{k+1}-y||^2 \le ||x_k-y||^2 - 2\alpha \big(f_{\omega_k}(x_k) - f_{\omega_k}(y)\big) + \alpha^2 C_0^2
$$

Take conditional expectation with $\mathcal{F}_k = \{x_0, \ldots, x_k\}$

$$
E\{||x_{k+1} - y||^2 | \mathcal{F}_k\} \le ||x_k - y||^2
$$

- 2 $\alpha E\{f_{\omega_k}(x_k) - f_{\omega_k}(y) | \mathcal{F}_k\} + \alpha^2 C_0^2$
= $||x_k - y||^2 - 2\alpha \sum_{i=1}^m \frac{1}{m} (f_i(x_k) - f_i(y)) + \alpha^2 C_0^2$
= $||x_k - y||^2 - \frac{2\alpha}{m} (f(x_k) - f(y)) + \alpha^2 C_0^2$,

where the first equality follows since ω_k takes the values $1, \ldots, m$ with equal probability $1/m$.

PROOF CONTINUED I

• Fix $\gamma > 0$, consider the level set L_{γ} defined by

$$
L_{\gamma} = \left\{ x \in X \mid f(x) < f^* + \frac{2}{\gamma} + \frac{\alpha m C_0^2}{2} \right\}
$$

and let $y_{\gamma} \in L_{\gamma}$ be such that $f(y_{\gamma}) = f^* + \frac{1}{\gamma}$. Define a new process $\{\hat{x}_k\}$ as follows

$$
\hat{x}_{k+1} = \begin{cases} \left[\hat{x}_k - \alpha g(\omega_k, \hat{x}_k)\right]^+ & \text{if } \hat{x}_k \notin L_\gamma, \\ y_\gamma & \text{otherwise,} \end{cases}
$$

where $\hat{x}_0 = x_0$. We argue that $\{\hat{x}_k\}$ (and hence also $\{x_k\}$ will eventually enter each of the sets $L_{\gamma}.$

Using key lemma with $y = y_{\gamma}$, we have

$$
E\{||\hat{x}_{k+1} - y_{\gamma}||^2 | \mathcal{F}_k\} \le ||\hat{x}_k - y_{\gamma}||^2 - z_k,
$$

where

$$
z_k = \begin{cases} \frac{2\alpha}{m} \left(f(\hat{x}_k) - f(y_\gamma) \right) - \alpha^2 C_0^2 & \text{if } \hat{x}_k \notin L_\gamma, \\ 0 & \text{if } \hat{x}_k = y_\gamma. \end{cases}
$$

PROOF CONTINUED II

• If $\hat{x}_k \notin L_{\gamma}$, we have

$$
z_k = \frac{2\alpha}{m} \left(f(\hat{x}_k) - f(y_\gamma) \right) - \alpha^2 C_0^2
$$

\n
$$
\geq \frac{2\alpha}{m} \left(f^* + \frac{2}{\gamma} + \frac{\alpha m C_0^2}{2} - f^* - \frac{1}{\gamma} \right) - \alpha^2 C_0^2
$$

\n
$$
= \frac{2\alpha}{m\gamma}.
$$

Hence, as long as $\hat{x}_k \notin L_{\gamma}$, we have

$$
E\left\{||\hat{x}_{k+1} - y_{\gamma}||^2 \mid \mathcal{F}_k\right\} \le ||\hat{x}_k - y_{\gamma}||^2 - \frac{2\alpha}{m\gamma}
$$

This, cannot happen for an infinite number of iterations, so that $\hat{x}_k \in L_\gamma$ for sufficiently large k (the Supermartingale Convergence Theorem is used here; see the notes.) Hence, in the original process we have

$$
\inf_{k\geq 0} f(x_k) \leq f^* + \frac{2}{\gamma} + \frac{\alpha m C_0^2}{2}
$$

with probability 1. Letting $\gamma \to \infty$, we obtain $\inf_{k>0} f(x_k) \leq f^* + \alpha m C_0^2/2.$ Q.E.D.

A CONVERGENCE RATE RESULT

• Let $\alpha_k \equiv \alpha$ in the randomized method. Then, for any positive scalar ϵ , we have with prob. 1

$$
\min_{0 \le k \le N} f(x_k) \le f^* + \frac{\alpha m C_0^2 + \epsilon}{2},
$$

where N is a random variable with

$$
E\{N\} \le \frac{m\big(d(x_0, X^*)\big)^2}{\alpha \epsilon}
$$

where $d(x_0, X^*)$ is the min distance of x_0 to the optimal set X^* .

Compare $w/$ the deterministic method. It is guaranteed to reach after processing no more than

$$
K = \frac{m\big(d(x_0, X^*)\big)^2}{\alpha \epsilon}
$$

components the level set

$$
\left\{ x \mid f(x) \le f^* + \frac{\alpha m^2 C_0^2 + \epsilon}{2} \right\}
$$

MIT OpenCourseWare <http://ocw.mit.edu>

6.253 Convex Analysis and Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: <http://ocw.mit.edu/terms>.