
LECTURE 18


LECTURE OUTLINE


•	 Approximate subgradient methods 

�-subdifferential • 

•	 �-subgradient methods 

•	 Incremental subgradient methods


All figures are courtesy of Athena Scientific, and are used with permission.



APPROXIMATE SUBGRADIENT METHODS


Consider minimization of • 

f(x) =  sup  φ(x, z)

z∈Z 

mwhere Z ⊂ � and φ( , z) is convex for all z ∈ Z
·
(dual minimization is a special case). 

• To compute subgradients of f at x ∈ dom(f), 
we find zx ∈ Z attaining the supremum above. 
Then 

gx ∈ ∂φ(x, zx) ⇒ gx ∈ ∂f(x) 

•	 Two potential areas of difficulty: 
− For subgradient method, we need to solve 

exactly the above maximization over z ∈ Z. 
− For steepest descent, we need all the subgra

dients, and then there are convergence diffi
culties to contend with. 

• In this lecture we address the first difficulty, in 
the next lecture the second. 

• We consider methods that use “approximate” 
subgradients. 



�-SUBDIFFERENTIAL


• We enlarge ∂f(x) so that we take into account 
“nearby” subgradients. 

• Fot a proper convex f : �n �→ (−∞,∞] and 
� > 0, we say that a vector g is an �-subgradient 
of f at a point x ∈ dom(f) if  

f(z) ≥ f(x) + (z − x)�g − �, ∀ z ∈ �n 

� 

• The �-subdifferential ∂�f(x) is the set of all �
subgradients of f at x. By convention, ∂�f(x) =  Ø 
for x /∈ dom(f). 

We have ∩� 0∂�f(x) =  ∂f(x) and • ↓

∂�1 f(x) ⊂ ∂�2 f(x)  if 0  < �1 < �2 



PROPERTIES OF �-SUBDIFFERENTIALS


• Assume that f is closed proper convex, � > 0.


• ∂�f(x) is  nonempty and closed for all x ∈
dom(f). (Use nonvertical separating hyperplane 
theorem.) 

0 

∂�f(x) is compact iff x ∈ int
�
dom(f)

�
. True  in  • 

particular, if f is real-valued. 

• Neighborhood/continuity property: Sub-
gradients at nearby points are �-subgradients at 
given point (for sufficiently large �). 

• The support function of ∂�f(x) is  

σ∂�f(x)(y) =  sup  y�g = inf  
f(x + αy) − f(x) +  � 

g∈∂�f (x) α>0 α 



CALCULATION OF AN �-SUBGRADIENT


Consider minimization of • 

f(x) =  sup  φ(x, z),	 (1) 
z∈Z 

n mwhere x ∈ � , z ∈ � , Z is a subset of �m, and 
n mφ : � × � �→ (−∞, ∞] is a function such that


φ( , z) is convex and closed for each z ∈ Z.·
• How to calculate �-subgradient at x ∈ dom(f)?


• Let zx ∈ Z attain the supremum within � ≥ 0 
in Eq. (1), and let gx be some subgradient of the 
convex function φ( , zx).·
•	 For all y ∈ �n, using the subgradient inequality, 

f(y) =  sup  φ(y, z) ≥ φ(y, zx) 
z∈Z 

≥ φ(x, zx) +  gx
� (y − x) ≥ f(x) − � + gx

� (y − x) 

i.e., gx is an �-subgradient of f at x, so  

φ(x, zx) ≥ sup φ(x, z) − � and gx ∈ ∂φ(x, zx) 
z∈Z 

⇒ gx ∈ ∂�f(x) 



�-SUBGRADIENT METHOD


• Can be viewed as an approximate subgradient 
method, using an �-subgradient in place of a sub-
gradient. 

• Problem: Minimize convex f : �n �→ � over a 
closed convex set X. 

Method: • 

xk+1 = PX (xk − αkgk) 

where gk is an �k-subgradient of f at xk, αk is a 
positive stepsize, and PX ( ) denotes projection on ·
X. 

• Can be viewed as subgradient method with “er
rors”. 



CONVERGENCE ANALYSIS


• Basic inequality: If {xk} is the �-subgradient 
method sequence, for all y ∈ X and k ≥ 0 

2 2 �xk+1−y� ≤ �xk−y� −2αk

�
f(xk)−f(y)−�k

�
+α2 

k�gk� 

• Replicate the entire convergence analysis for 
subgradient methods, but carry along the �k terms. 

• Example: Constant αk ≡ α, constant �k ≡ �. 
Assume �gk� ≤ c for all k. For any optimal x∗, 

�xk+1−x∗�2 ≤ �xk−x∗�2−2α
�
f(xk)−f∗−�

�
+α2c2, 

so the distance to x∗ decreases if 

2
�
f(xk) − f∗ − �

� 

0 < α < 
c2 

or equivalently, if xk is outside the level set 
� 

x 
��� f(x) ≤ f∗ + � + 

αc2 
� 

2 

Example: If αk → 0, 
�

αk →∞, and �k → �,• k 
we get convergence to the �-optimal set. 



INCREMENTAL SUBGRADIENT METHODS


Consider minimization of sum • 

m

f(x) =  
� 

fi(x) 
i=1 

• Often arises in duality contexts with m: very  
large (e.g., separable problems). 

• Incremental method moves x along a sub-
gradient gi of a component function fi NOT 
the (expensive) subgradient of f , which is  

�
i gi. 

• View an iteration as a cycle of m subiterations, 
one for each component fi. 

• Let xk be obtained after k cycles. To obtain 
xk+1, do one more cycle: Start with ψ0 = xk, and 
set xk+1 = ψm, after the m steps 

ψi = PX (ψi−1 − αkgi), i = 1, . . . ,m  

with gi being a subgradient of fi at ψi−1. 

• Motivation is faster convergence. A cycle  
can make much more progress than a subgradient 
iteration with essentially the same computation. 



CONNECTION WITH �-SUBGRADIENTS 

• Neighborhood property: If x and x are

“near” each other, then subgradients at x can be

viewed as �-subgradients at x, with  � “small.”


n• If g ∈ ∂f(x), we have for all z ∈ � , 

f(z) ≥ f(x) +  g�(z − x)

≥ f(x) +  g�(z − x) +  f(x) − f(x) +  g�(x − x)

≥ f(x) +  g�(z − x) − �,


where � = |f(x) − f(x)| + �g� · �x − x�. Thus, 
g ∈ ∂�f(x), with �: small when x is near x. 

• The incremental subgradient iter. is an �-subgradient 
iter. with � = �1 + + �m, where  �i is the “error” · · ·
in ith step in the cycle (�i: Proportional to αk).


Use
• 

∂�1 f1(x) +  + ∂�m fm(x) ⊂ ∂�f(x),· · ·

where � = �1 + + �m, to approximate the �· · ·  
subdifferential of the sum f = 

�m
i=1 fi. 

• Convergence to optimal if αk → 0, 
�

αk →∞.k 



CONVERGENCE OF INCREMENTAL SUBGR.


Problem 
m

• 

min 
� 

fi(x) 
x∈X 

i=1 

• Incremental subgradient method 

xk+1 = ψm,k, ψi,k = [ψi−1,k − αkgi,k]+ , i = 1, . . . ,m  

starting with ψ0,k = xk, where  gi,k is a subgradi
ent of fi at ψi−1,k. 

• Analysis parallels/extends the one for nonincre
mental subgradient methods 

• Key Lemma: For all y ∈ X and k, 

||xk+1−y||2 ≤ ||xk−y||2−2αk

�
f(xk)−f(y)

�
+α2 C2,k

where C = 
�m

i=1 Ci and 

Ci = sup  
k 

�
||g|| | g ∈ ∂fi(xk) ∪ ∂fi(ψi−1,k)

� 



ERROR BOUND: CONSTANT STEPSIZE


• For αk ≡ α, we  have  

αC2 αm2C2 

inf f(xk) ≤ f∗ + ≤ f∗ + 0 

k≥0 2 2 

where 
C0 = max{C1, . . . , Cm} 

is the max component subgradient bound. (Com
parable error to the nonincremental method.) 

• Sharpness of the estimate: There are prob
lems for which the upper bound is (almost) sharp 
with cyclic order of processing the component func
tions (see the end-of-chapter problems). 

• Lower bound on the error: There is a prob
lem, where even with best processing order, 

f∗ + 
αmC0

2 

≤ inf f(xk)
2 k≥0 

where 
C0 = max{C1, . . . , Cm} 

• Question: Is it possible to improve the upper 
bound by optimizing the order of processing the 
component functions? 



RANDOMIZED ORDER METHODS


xk+1 = 
�
xk − αkg(ωk, xk)

�+ 

where ωk is a random variable taking equiprobable 
values from the set {1, . . . ,m}, and g(ωk, xk) is  a  
subgradient of the component fωk at xk. 

•	 Assumptions: 

(a)	 {ωk} is a sequence of independent random 
variables. Furthermore, the sequence {ωk}
is independent of the sequence {xk}. 

(b) The set of subgradients 
�
g(ωk, xk) | k = 

0, 1, . . .
� 

is bounded, i.e., there exists a pos
itive constant C0 such that with prob. 1 

||g(ωk, xk)||≤ C0, ∀ k ≥ 0 

•	 Stepsize Rules: 
− Constant: αk ≡ α 

− Diminishing: 
�

k αk = ∞, 
�

k(αk)2 < ∞ 

− Dynamic 



RANDOMIZED METHOD W/ CONSTANT STEP


• With probability 1 

inf f(xk) ≤ f∗ + 
αmC0

2 

k≥0 2 

A better/sharp error bound!


Proof: By adapting key lemma, for all y ∈ X, k


0||xk+1−y||2 ≤ ||xk−y||2−2α
�
fωk (xk)−fωk (y)

�
+α2C2 

Take conditional expectation with Fk = {x0, . . . , xk} 

E
�
||xk+1 − y||2 | Fk

� 
≤ ||xk − y||2 

� 
+ α2C2− 2αE

�
fωk (xk) − fωk (y) | Fk 0 
m

= ||xk − y||2 − 2α 
� 

m 
1 �

fi(xk) − fi(y)
� 

+ α2C0
2 

i=1 

= ||xk − y||2 − 
2
m

α �
f(xk) − f(y)

� 
+ α2C0

2 , 

where the first equality follows since ωk takes the 
values 1, . . . ,m  with equal probability 1/m. 



PROOF CONTINUED I


• Fix γ > 0, consider the level set Lγ defined by 

� 
2 αmC2 � 

Lγ = x ∈ X | f(x) < f∗ + 
γ 

+
2 

0 

and let yγ ∈ Lγ be such that f(yγ ) =  f∗ + γ 
1 . 

Define a new process {x̂k} as follows 

x̂k+1 = 

� �
x̂k − αg(ωk, x̂k)

�+ if x̂k ∈/ Lγ , 
yγ otherwise, 

where x̂0 = x0. We argue that {x̂k} (and hence 
also {xk}) will eventually enter each of the sets 
Lγ . 

Using key lemma with y = yγ , we  have  

ˆ − zk,E
�
||x̂k+1 − yγ ||2 | Fk

� 
≤ ||xk − yγ ||2 

where 
� 

2α 
�
f(x̂k) − f(yγ )

� 
− α2C2 if x̂k ∈/ Lγ ,mzk = 0 

0  if x̂k = yγ . 



PROOF CONTINUED II 

• If x̂k ∈/ Lγ , we  have  

zk =
2α �

f(x̂k) − f(yγ )
� 
− α2C2 

0 m 
2α 

� 
2 αmC2 1 

� 

≥
m

f∗ + 
γ 

+
2 

0 − f∗ −
γ 

− α2C0
2 

2α

= .


mγ


Hence, as long as x̂k ∈/ Lγ , we  have  

2α

ˆ
E

�
||x̂k+1 − yγ ||2 | Fk

� 
≤ ||xk − yγ ||2 −

mγ 

This, cannot happen for an infinite number of it
erations, so that x̂k ∈ Lγ for sufficiently large 
k (the Supermartingale Convergence Theorem is 
used here; see the notes.) Hence, in the original 
process we have 

inf 
k≥0 

f(xk) ≤ f∗ + 
2 
γ 

+ 
αmC2 

0 

2 

with probability 1. Letting γ → ∞, we obtain 
infk≥0 f(xk) ≤ f∗ + αmC2/2. Q.E.D. 0 



A CONVERGENCE RATE RESULT


• Let αk ≡ α in the randomized method. Then, 
for any positive scalar �, we have with prob. 1 

0≤k≤N 
f(xk) ≤ f∗ + 

αmC

2 
0
2 + �

min ,


where N is a random variable with 

E
�
N

� 
≤ 

m
�
d(x0, X∗)

�2 

α� 

where d(x0, X∗) is the min distance of x0 to the 
optimal set X∗. 
• Compare w/ the deterministic method. It is

guaranteed to reach after processing no more than


m
�
d(x0, X

∗)
�2 

K = 
α� 

components the level set 
� ��� f(x) ≤ f∗ + 

αm 2C0
2 + � 

� 
x 

2 
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