LECTURE 16

LECTURE OUTLINE

- Conic programming
- Semidefinite programming
- Exact penalty functions
- Descent methods for convex/nondifferentiable optimization
- Steepest descent method

LINEAR-CONIC FORMS

 $\begin{array}{cccc}
\min_{Ax=b, \ x\in C} c'x & \Longleftrightarrow & \max_{c-A'\lambda\in\hat{C}} b'\lambda, \\
\min_{Ax-b\in C} c'x & \Longleftrightarrow & \max_{A'\lambda=c,\lambda \in \hat{C}} b'\lambda,
\end{array}$

where $x \in \Re^n, \lambda \in \Re^m, c \in \Re^n, b \in \Re^m, A: m \times n$.

• Second order cone programming:

minimize c'xsubject to $A_ix - b_i \in C_i, i = 1, ..., m$,

where c, b_i are vectors, A_i are matrices, b_i is a vector in \Re^{n_i} , and

 C_i : the second order cone of \Re^{n_i}

- The cone here is $C = C_1 \times \cdots \times C_m$
- The dual problem is

maximize
$$\sum_{i=1}^{m} b'_{i}\lambda_{i}$$

subject to
$$\sum_{i=1}^{m} A'_{i}\lambda_{i} = c, \lambda \quad i \in C_{i}, \ i = 1, \dots, m,$$

where $\lambda = (\lambda_1, \ldots, \lambda_m)$.

SEMIDEFINITE PROGRAMMING

• Consider the symmetric $n \times n$ matrices. Inner product $\langle X, Y \rangle = \operatorname{trace}(XY) = \sum_{i,j=1}^{n} x_{ij} y_{ij}$.

• Let C be the cone of pos. semidefinite matrices.

• C is self-dual, and its interior is the set of positive definite matrices.

• Fix symmetric matrices D, A_1, \ldots, A_m , and vectors b_1, \ldots, b_m , and consider

minimize $\langle D, X \rangle$ subject to $\langle A_i, X \rangle = b_i, i = 1, \dots, m, X \in C$

• Viewing this as a linear-conic problem (the first special form), the dual problem (using also self-duality of C) is

maximize
$$\sum_{i=1}^{m} b_i \lambda_i$$

subject to $D - (\lambda_1 A_1 + \dots + \lambda_m A_m) \in C$

• There is no duality gap if there exists primal feasible solution that is pos. definite, or there exists λ such that $D - (\lambda_1 A_1 + \cdots + \lambda_m A_m)$ is pos. definite.

EXAMPLE: MINIMIZE THE MAXIMUM EIGENVALUE

- Given $n \times n$ symmetric matrix $M(\lambda)$, depending on a parameter vector λ , choose λ to minimize the maximum eigenvalue of $M(\lambda)$.
- We pose this problem as

```
minimize z
```

```
subject to maximum eigenvalue of M(\lambda) \leq z,
```

```
or equivalently
```

minimize zsubject to $zI - M(\lambda) \in C$,

where I is the $n \times n$ identity matrix, and C is the semidefinite cone.

• If $M(\lambda)$ is an affine function of λ ,

$$M(\lambda) = D + \lambda_1 M_1 + \dots + \lambda_m M_m,$$

the problem has the form of the dual semidefinite problem, with the optimization variables being $(z, \lambda_1, \ldots, \lambda_m)$.

EXAMPLE: LOWER BOUNDS FOR DISCRETE OPTIMIZATION

• Quadr. problem with quadr. equality constraints

minimize $x'Q_0x + a'_0x + b_0$ subject to $x'Q_ix + a'_ix + b_i = 0$, i = 1, ..., m, $Q_0, ..., Q_m$: symmetric (not necessarily ≥ 0).

- Can be used for discrete optimization. For example an integer constraint $x_i \in \{0, 1\}$ can be expressed by $x_i^2 x_i = 0$.
- The dual function is

$$q(\lambda) = \inf_{x \in \Re^n} \big\{ x' Q(\lambda) x + a(\lambda)' x + b(\lambda) \big\},$$

where

$$Q(\lambda) = Q_0 + \sum_{i=1}^m \lambda_i Q_i,$$

$$a(\lambda) = a_0 + \sum_{i=1}^m \lambda_i a_i, \quad b(\lambda) = b_0 + \sum_{i=1}^m \lambda_i b_i$$

• It turns out that the dual problem is equivalent to a semidefinite program ...

EXACT PENALTY FUNCTIONS

• We use Fenchel duality to derive an equivalence between a constrained convex optimization problem, and a penalized problem that is less constrained or is entirely unconstrained.

• We consider the problem

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in X, \qquad g(x) \leq 0, \end{array}$

where $g(x) = (g_1(x), \ldots, g_r(x)), X$ is a convex subset of \Re^n , and $f : \Re^n \to \Re$ and $g_j : \Re^n \to \Re$ are real-valued convex functions.

• We introduce a convex function $P : \Re^r \mapsto \Re$, called *penalty function*, which satisfies

 $P(u) = 0, \forall u \leq 0, P(u) > 0, \text{ if } u_i > 0 \text{ for some } i$

• We consider solving, in place of the original, the "penalized" problem

minimize f(x) + P(g(x))subject to $x \in X$,

FENCHEL DUALITY

• We have

$$\inf_{x \in X} \left\{ f(x) + P(g(x)) \right\} = \inf_{u \in \Re^r} \left\{ p(u) + P(u) \right\}$$

where $p(u) = \inf_{x \in X, g(x) \le u} f(x)$ is the primal function.

• Assume $-\infty < q^*$ and $f^* < \infty$ so that p is proper (in addition to being convex).

• By Fenchel duality

$$\inf_{u \in \Re^r} \{ p(u) + P(u) \} = \sup_{\mu \ge 0} \{ q(\mu) - Q(\mu) \},\$$

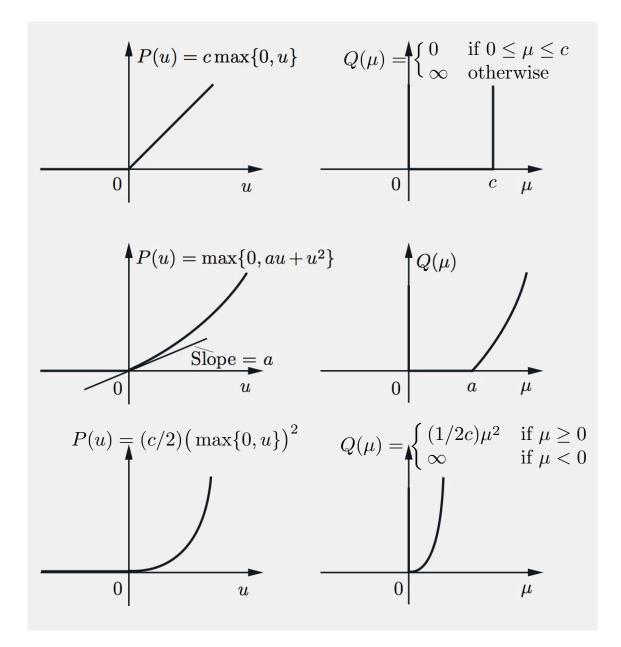
where for $\mu \geq 0$,

$$q(\mu) = \inf_{x \in X} \left\{ f(x) + \mu' g(x) \right\}$$

is the dual function, and Q is the conjugate convex function of P:

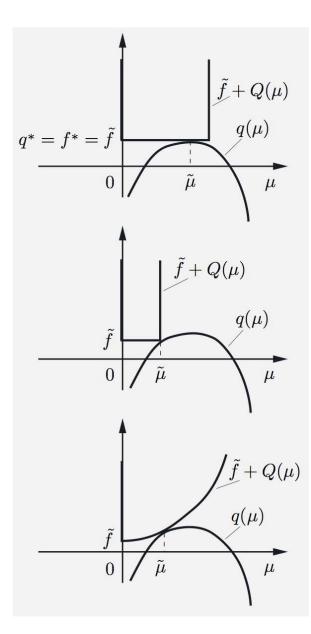
$$Q(\mu) = \sup_{u \in \Re^r} \left\{ u'\mu - P(u) \right\}$$

PENALTY CONJUGATES



• Important observation: For Q to be flat for some $\mu > 0$, P must be nondifferentiable at 0.

FENCHEL DUALITY VIEW



• For the penalized and the original problem to have equal optimal values, Q must be "flat enough" so that some optimal dual solution μ^* minimizes Q, i.e., $0 \in \partial Q(\mu^*)$ or equivalently

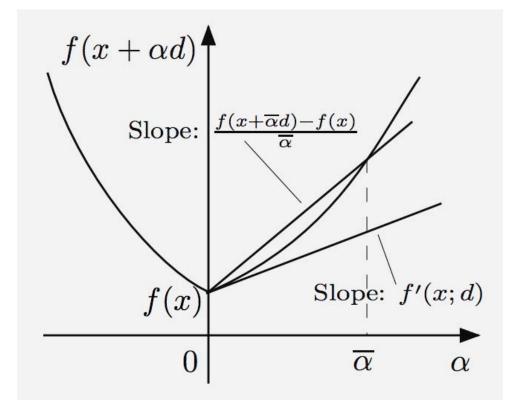
$$\mu^* \in \partial P(0)$$

• True if $P(u) = c \sum_{j=1}^{r} \max\{0, u_j\}$ with $c \ge \|\mu^*\|$ for some optimal dual solution μ^* .

DIRECTIONAL DERIVATIVES

• Directional derivative of a proper convex f:

 $f'(x;d) = \lim_{\alpha \downarrow 0} \frac{f(x + \alpha d) - f(x)}{\alpha}, \ x \in \operatorname{dom}(f), \ d \in \Re^n$



• The ratio

$$\frac{f(x+\alpha d) - f(x)}{\alpha}$$

is monotonically nonincreasing as $\alpha \downarrow 0$ and converges to f'(x; d).

• For all $x \in ri(dom(f))$, $f'(x; \cdot)$ is the support function of $\partial f(x)$.

STEEPEST DESCENT DIRECTION

- Consider unconstrained minimization of convex $f: \Re^n \mapsto \Re$.
- A descent direction d at x is one for which f'(x; d) < 0, where

$$f'(x;d) = \lim_{\alpha \downarrow 0} \frac{f(x + \alpha d) - f(x)}{\alpha} = \sup_{g \in \partial f(x)} d'g$$

is the directional derivative.

- Can decrease f by moving from x along descent direction d by small stepsize α .
- Direction of steepest descent solves the problem

$$\begin{array}{ll} \text{minimize} & f'(x;d) \\ \text{subject to} & \|d\| \le 1 \end{array}$$

• Interesting fact: The steepest descent direction is $-g^*$, where g^* is the vector of minimum norm in $\partial f(x)$:

$$\min_{\|d\| \le 1} f'(x;d) = \min_{\|d\| \le 1} \max_{g \in \partial f(x)} d'g = \max_{g \in \partial f(x)} \min_{\|d\| \le 1} d'g$$
$$= \max_{g \in \partial f(x)} \left(-\|g\| \right) = -\min_{g \in \partial f(x)} \|g\|$$

STEEPEST DESCENT METHOD

• Start with any $x_0 \in \Re^n$.

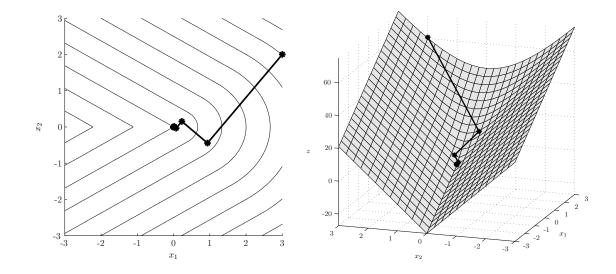
• For $k \ge 0$, calculate $-g_k$, the steepest descent direction at x_k and set

$$x_{k+1} = x_k - \alpha_k g_k$$

• Difficulties:

- Need the entire $\partial f(x_k)$ to compute g_k .
- Serious convergence issues due to discontinuity of $\partial f(x)$ (the method has no clue that $\partial f(x)$ may change drastically nearby).

• Example with α_k determined by minimization along $-g_k$: $\{x_k\}$ converges to nonoptimal point.



MIT OpenCourseWare http://ocw.mit.edu

6.253 Convex Analysis and Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.