
LECTURE 14


LECTURE OUTLINE


•	 Min-Max Duality 

Existence of Saddle Points • 

−−−−−−−−−−−−−−−−−−−−−−−−−−−−


Given φ : X × Z �→ �, where  X ⊂ �n, Z ⊂ �m 

consider 
minimize sup φ(x, z)


z∈Z 

subject to x ∈ X 

and 
maximize inf φ(x, z)


x∈X 

subject to z ∈ Z. 

All figures are courtesy of Athena Scientific, and are used with permission.



REVIEW


• Minimax inequality (holds always)


sup inf φ(x, z) ≤ inf sup φ(x, z)

z∈Z x∈X x∈X z∈Z 

Important issue is whether minimax equality holds. 

• Definition: (x∗, z∗) is called a saddle point of 
φ if 

φ(x∗, z) ≤ φ(x∗, z∗) ≤ φ(x, z∗), ∀ x ∈ X, ∀ z ∈ Z 

• Proposition: (x∗, z∗) is a saddle point if and 
only if the minimax equality holds and 

x∗ ∈ arg min sup φ(x, z), z∗ ∈ arg max inf φ(x, z) 
x∈X z∈Z z∈Z x∈X 

• Connection w/ constrained optimization: 
− Strong duality is equivalent to 

inf sup L(x, µ) =  sup  inf L(x, µ) 
x∈X µ≥0 µ≥0 x∈X 

where L is the Lagrangian function. 
− Optimal primal-dual solution pairs (x∗, µ∗) 

are the saddle points of L. 



MC/MC FRAMEWORK FOR MINIMAX


• Use MC/MC with M = epi(p) where  p : �m �→
[−∞, ∞] is the perturbation function 

p(u) =  inf  sup 
�
φ(x, z) − u�z

�
, 

x∈X z∈Z 
u ∈ �m 

• Important fact: p is obtained by partial min. 

• Note that w∗ = p(0) = inf sup φ and φ(·, z): 
convex for all z implies that M is convex. 

• If −φ(x, ·) is closed and convex, the dual func
tion in MC/MC is 

q(z) =  inf  φ(x, z), q∗ = sup  inf  φ 
x∈X 



MINIMAX THEOREM I 

me that: Assu

(1) X and Z are convex. 

(2) p(0) = infx∈X supz∈Z φ(x, z) < ∞. 

(3) For each z ∈ Z, the function φ( , z) is convex.
·
(4) For each x ∈ X, the function −φ(x, ) :  Z �→
·

� is closed and convex. 

Then, the minimax equality holds if and only if

the function p is lower semicontinuous at u = 0.


Proof: The convexity/concavity assumptions guar
antee that the minimax equality is equivalent to 
q∗ = w∗ in the min common/max crossing frame
work. Furthermore, w∗ < ∞ by assumption, and 
the set M [equal to M and epi(p)] is convex. 

By the 1st Min Common/Max Crossing The
orem, we have w∗ = q∗ iff for every sequence �
(uk, wk)

� 
⊂ M with uk → 0, there holds w∗ ≤

lim infk→∞ wk. This is equivalent to the lower 
semicontinuity assumption on p: 

p(0) ≤ lim inf p(uk), for all {uk} with uk → 0

k→∞




MINIMAX THEOREM II


Assume that: 

(1) X and Z are convex. 

(2) p(0) = infx∈X supz∈Z φ(x, z) > −∞. 

(3) For each z ∈ Z, the function φ( , z) is convex.
·
(4) For each x ∈ X, the function −φ(x, ) :  Z �→
·

� is closed and convex. 

(5) 0 lies in the relative interior of dom(p). 

Then, the minimax equality holds and the supre
mum in supz∈Z infx∈X φ(x, z) is attained by some 
z ∈ Z. [Also the set of z where the sup is attained 
is compact if 0 is in the interior of dom(p).] 

Proof: Apply the 2nd Min Common/Max Cross
ing Theorem. 

• Counterexamples of strong duality and exis
tence of solutions/saddle points can be constructed 
from corresponding constrained min examples. 



EXAMPLE I


• Let X = 
�
(x1, x2) | x ≥ 0

� 
and Z = {z ∈ � |

z ≥ 0}, and let 
φ(x, z) =  e−

√
x1x2 + zx1, 

which satisfy the convexity and closedness assump
tions. For all z ≥ 0, 

inf 
�
e−
√

x1x2 + zx1
� 

= 0, 
x≥0 

so supz≥0 infx≥0 φ(x, z) = 0. Also, for all x ≥ 0, 

sup 
�
e−
√

x1x2 + zx1
� 

= 

� 
1  if  x1 = 0, 

z≥0 ∞ if x1 > 0, 

so infx≥0 supz≥0 φ(x, z) = 1. 

Here • 

p(u) =  inf  sup 
�
e−
√

x1x2 + z(x1 − u)
� 

x≥0 z≥0 

epi(p) 

u 

p(u) 

1 

0 



EXAMPLE II


•	 Let X = �, Z = {z ∈ � |  z ≥ 0}, and let 

φ(x, z) =  x + zx2, 

which satisfy the convexity and closedness assump
tions.	 For all z ≥ 0, 

� 
−1/(4z) if  z >  0,inf 

x∈� 
{x + zx2} = −∞ if z = 0, 

so supz≥0 infx∈� φ(x, z) = 0. Also, for all x ∈ �, 

� 
0  if  x = 0, 

z≥0 
{x + zx2sup	 } = ∞ otherwise,


so infx∈� supz≥0 φ(x, z) = 0. However, the sup is 
not attained, i.e., there is no saddle point. 

Here • 

p(u) =  inf  sup − uz}

z≥0

{x + zx2 
x∈� 

= 

� 
−√u if u ≥ 0, 
∞ if u <  0. 



SADDLE POINT ANALYSIS


• The preceding analysis indicates the importance 
of the perturbation function 

p(u) =  inf  F (x, u),

x∈�n 

where 

F (x, u) =  

� 
supz∈Z 

�
φ(x, z) − u�z

� 
if x ∈ X, 

∞ if x /∈ X. 

It suggests a two-step process to establish the min

imax equality and the existence of a saddle point:


(1)	 Show that p is closed and convex, thereby  
showing that the minimax equality holds by 
using the first minimax theorem. 

(2)	 Verify that the inf of supz∈Z φ(x, z) over 
x ∈ X, and the sup of infx∈X φ(x, z) over 
z ∈ Z are attained, thereby showing that 
the set of saddle points is nonempty. 



SADDLE POINT ANALYSIS (CONTINUED)


• Step (1) requires two types of assumptions: 

(a) Convexity/concavity/semicontinuity conditions 
of Minimax Theorem I (so the MC/MC frame
work applies). 

(b) Conditions for preservation of closedness by 
the partial minimization in 

p(u) =  inf  F (x, u) 
x∈�n 

e.g., for some u, the nonempty level sets

�
x | F (x, u) ≤ γ

� 

are compact. 

• Step (2) requires that either Weierstrass’ The
orem can be applied, or else one of the conditions 
for existence of optimal solutions developed so far 
is satisfied. 



CLASSICAL SADDLE POINT THEOREM


• Assume convexity/concavity/semicontinuity of

φ and that X and Z are compact. Then the set

of saddle points is nonempty and compact.


• Proof: F is convex and closed by the convex

ity/concavity/semicontinuity of φ, so  p is also con

vex. Using the compactness of Z, F is real-valued

over X × �m, and from the compactness of X,

it follows that p is also real-valued and therefore

continuous. Hence, the minimax equality holds by

the first minimax theorem.


The function supz∈Z φ(x, z) is equal to F (x, 0), 
so it is closed, and the set of its minima over x ∈ X 
is nonempty and compact by Weierstrass’ Theo
rem. Similarly the set of maxima of the function 
infx∈X φ(x, z) over  z ∈ Z is nonempty and com
pact. Hence the set of saddle points is nonempty 
and compact. Q.E.D. 



ANOTHER THEOREM


• Use the theory of preservation of closedness 
under partial minimization. 

• Assume convexity/concavity/semicontinuity of 
φ. Consider the functions 

t(x) =  F (x, 0) = 

� 
supz∈Z φ(x, z) if  

if x /
x ∈ X, 

∞ ∈ X, 

and 

r(z) =  
� − infx∈X φ(x, z) if  z ∈ Z, 
∞ if z /∈ Z. 

• If the level sets of t are compact, the minimax 
equality holds, and the min over x of 

sup φ(x, z)

z∈Z 

[which is t(x)] is attained. (Take u = 0  in  the  
partial min theorem to show that p is closed.) 

• If the level sets of t and r are compact, the set 
of saddle points is nonempty and compact. 

• Various extensions: Use conditions for preser

vation of closedness under partial minimization.




SADDLE POINT THEOREM


Assume the convexity/concavity/semicontinuity con
ditions, and that any one of the following holds: 

(1)	 X and Z are compact. 

(2)	 Z is compact and there exists a vector z ∈ Z

and a scalar γ such that the level set 

�
x ∈


X | φ(x, z) ≤ γ
� 

is nonempty and compact.


(3)	 X is compact and there exists a vector x ∈ X

and a scalar γ such that the level set 

�
z ∈


Z | φ(x, z) ≥ γ
� 

is nonempty and compact.


(4) There exist vectors x ∈ X and z ∈ Z, and a

scalar γ such that the level sets

�
x ∈ X | φ(x, z) ≤ γ

�
, 

�
z ∈ Z | φ(x, z) ≥ γ

�
, 

are nonempty and compact. 

Then, the minimax equality holds, and the set of 
saddle points of φ is nonempty and compact. 
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