LECTURE 13

LECTURE OUTLINE

- • Subgradients
- Fenchel inequality
- • Sensitivity in constrained optimization
- Subdifferential calculus
- Optimality conditions

SUBGRADIENTS

• Let $f : \Re^n \mapsto (-\infty, \infty]$ be a convex function. A vector $g \in \mathbb{R}^n$ is a *subgradient* of f at a point $x \in \text{dom}(f)$ if

$$
f(z) \ge f(x) + (z - x)'g, \qquad \forall \ z \in \Re^n
$$

• g is a subgradient if and only if

$$
f(z) - z'g \ge f(x) - x'g, \qquad \forall \ z \in \Re^n
$$

so g is a subgradient at x if and only if the hyperplane in \Re^{n+1} that has normal $(-g, 1)$ and passes through $(x, f(x))$ supports the epigraph of f.

• The set of all subgradients at x is the *subdiffer*ential of f at x, denoted $\partial f(x)$.

EXAMPLES OF SUBDIFFERENTIALS

Some examples:

• If f is differentiable, then $\partial f(x) = \{\nabla f(x)\}.$ **Proof:** If $g \in \partial f(x)$, then

$$
f(x+z) \ge f(x) + g'z, \qquad \forall \ z \in \Re^n.
$$

Apply this with $z = \gamma(\nabla f(x) - g), \gamma \in \Re$, and use 1st order Taylor series expansion to obtain

$$
\gamma \|\nabla f(x) - g\|^2 \ge o(\gamma), \qquad \forall \ \gamma \in \Re
$$

EXISTENCE OF SUBGRADIENTS

Note the connection with MC/MC

 $M = \text{epi}(f_x), \qquad f_x(z) = f(x+z) - f(x)$

Let $f : \mathbb{R}^n \mapsto (-\infty, \infty]$ be a proper convex function. For every $x \in \mathrm{ri}(\mathrm{dom}(f)),$

$$
\partial f(x) = S^{\perp} + G,
$$

where:

- $-$ S is the subspace that is parallel to the affine hull of $dom(f)$
- − G is a nonempty and compact set.

Furthermore, $\partial f(x)$ is nonempty and compact if and only if x is in the interior of dom(f).

EXAMPLE: SUBDIFFERENTIAL OF INDICATOR

- Let C be a convex set, and δ_C be its indicator function.
- For $x \notin C$, $\partial \delta_C(x) = \emptyset$, by convention.
- For $x \in C$, we have $g \in \partial \delta_C(x)$ iff

$$
\delta_C(z) \ge \delta_C(x) + g'(z - x), \qquad \forall \ z \in C,
$$

or equivalently $g'(z-x) \leq 0$ for all $z \in C$. Thus $\partial \delta_C(x)$ is the normal cone of C at x, denoted $N_C(x)$:

$$
N_C(x) = \big\{ g \mid g'(z - x) \le 0, \,\forall \, z \in C \big\}.
$$

Example: For the case of a polyhedral set

$$
P = \{x \mid a_i' x \le b_i, i = 1, \ldots, m\},\
$$

we have

$$
N_P(x) = \begin{cases} \{0\} & \text{if } x \in \text{int}(P), \\ \text{cone}(\{a_i \mid a'_i x = b_i\}) & \text{if } x \notin \text{int}(P). \end{cases}
$$

FENCHEL INEQUALITY

• Let $f : \Re^n \mapsto (-\infty, \infty]$ be proper convex and let f^* be its conjugate. Using the definition of conjugacy, we have Fenchel's inequality:

$$
x'y \le f(x) + f^*(y), \qquad \forall \ x \in \Re^n, \ y \in \Re^n.
$$

• **Conjugate Subgradient Theorem:** The following two relations are equivalent for a pair of vectors (x, y) :

(i)
$$
x'y = f(x) + f^{*}(y)
$$
.

(ii)
$$
y \in \partial f(x)
$$
.

If f is closed, (i) and (ii) are equivalent to (iii) $x \in \partial f^*(y)$.

MINIMA OF CONVEX FUNCTIONS

Application: Let f be closed proper convex and let X^* be the set of minima of f over \mathbb{R}^n . Then:

(a)
$$
X^* = \partial f^*(0)
$$
.

- (b) X^* is nonempty if $0 \in \text{ri}(\text{dom}(f^*)).$
- (c) X^* is nonempty and compact if and only if $0 \in \mathrm{int}(\mathrm{dom}(\overline{f^*}))$.

Proof: (a) From the subgradient inequality,

$$
x^*
$$
 minimizes f iff $0 \in \partial f(x^*)$,

and since

$$
0 \in \partial f(x^*) \quad \text{if } x^* \in \partial f^*(0),
$$

we have

 x^* minimizes f iff $x^* \in \partial f^*(0)$,

(b) $\partial f^*(0)$ is nonempty if $0 \in \mathrm{ri}(\mathrm{dom}(f^*)).$ (c) $\partial f^*(0)$ is nonempty and compact if and only if $0 \in \text{int}(\text{dom}(f^*))$. Q.E.D.

SENSITIVITY INTERPRETATION

- Consider MC/MC for the case $M = \text{epi}(p)$.
- Dual function is

$$
q(\mu) = \inf_{u \in \mathbb{R}^m} \{p(u) + \mu'u\} = -p^*(-\mu),
$$

where p^* is the conjugate of p.

Assume p is proper convex and strong duality holds, so $p(0) = w^* = q^* = \sup_{\mu \in \mathbb{R}^m} \{-p^*(-\mu)\}.$ Let Q^* be the set of dual optimal solutions,

$$
Q^* = \{ \mu^* \mid p(0) + p^*(-\mu^*) = 0 \}.
$$

From Conjugate Subgradient Theorem, $\mu^* \in Q^*$ if and only if $-\mu^* \in \partial p(0)$, i.e., $Q^* = -\partial p(0)$.

• If p is convex and differentiable at $0, -\nabla p(0)$ is equal to the unique dual optimal solution μ^* .

• Constrained optimization example

$$
p(u) = \inf_{x \in X, \, g(x) \le u} f(x),
$$

If p is convex and differentiable,

$$
\mu_j^* = -\frac{\partial p(0)}{\partial u_j}, \qquad j = 1, \dots, r.
$$

EXAMPLE: SUBDIFF. OF SUPPORT FUNCTION

Consider the support function $\sigma_X(y)$ of a set X. To calculate $\partial \sigma_X(y)$ at some y, we introduce

$$
r(y) = \sigma_X(y + y), \qquad y \in \Re^n.
$$

- We have $\partial \sigma_X(y) = \partial r(0) = \arg \min_{x \in \mathbb{R}^n} r^*(x)$.
- We have $r^*(x)=\sup_{y\in\Re^n} {y'x-r(y)}$, or

$$
r^*(x) = \sup_{y \in \mathbb{R}^n} \{ y'x - \sigma_X(y + y) \} = \delta(x) - y'x,
$$

where δ is the indicator function of $\text{cl}(\text{conv}(X)).$

• Hence $\partial \sigma_X(y) = \arg \min_{x \in \Re^n} \delta(x) - y'x$, or

$$
\partial \sigma_X(y) = \arg \max_{x \in \text{cl}(\text{conv}(X))} y'x
$$

EXAMPLE: SUBDIFF. OF POLYHEDRAL FN

• Let

$$
f(x) = \max\{a'_1x + b_1, \ldots, a'_rx + b_r\}.
$$

• For a fixed $x \in \mathbb{R}^n$, consider

$$
A_x = \{ j \mid a'_j x + b_j = f(x) \}
$$

and the function $r(x) = \max\{a'_j x \mid j \in A_x\}.$

- It can be seen that $\partial f(x) = \partial r(0)$.
- Since r is the support function of the finite set ${a_j | j \in A_x},$ we see that

$$
\partial f(x) = \partial r(0) = \text{conv}(\{a_j \mid j \in A_x\})
$$

CHAIN RULE

• Let $f : \Re^m \mapsto (-\infty, \infty]$ be convex, and A be a matrix. Consider $F(x) = f(Ax)$ and assume that F is proper. If either f is polyhedral or else the range of $R(A) \cap \text{ri}(\text{dom}(f)) \neq \emptyset$, we have

$$
\partial F(x) = A' \partial f(Ax), \qquad \forall \ x \in \Re^n.
$$

Proof: Showing $\partial F(x) \supset A'\partial f(Ax)$ is simple and does not require the relative interior assumption. For the reverse inclusion, let $d \in \partial F(x)$ so $F(z) \geq$ $F(x) + (z - x)'d \ge 0$ or $f(Az) - z'd \ge f(Ax) - x'd$ for all z , so (Ax, x) solves

> minimize $f(y) - z'd$ subject to $y \in \text{dom}(f)$, $Az = y$.

If $R(A) \cap \text{ri}(\text{dom}(f)) \neq \emptyset$, by strong duality theorem, there is a dual optimal solution λ , such that

 $(Ax, x) \in \arg\min_{y \in \Re^{m}} \{f(y) - z'd + \lambda'(Az - y)\}\$ $y \in \Re^m, z \in \Re^n$ Since the min over z is unconstrained, we have $d = A' \lambda$, so $Ax \in \arg\min_{y \in \Re^m} \{f(y) - \lambda' y\}$, or

 $f(y) > f(Ax) + \lambda'(y - Ax), \quad \forall y \in \Re^m.$

Hence $\lambda \in \partial f(Ax)$, so that $d = A'\lambda \in A'\partial f(Ax)$. It follows that $\partial F(x) \subset A' \partial f(Ax)$. In the polyhedral case, $dom(f)$ is polyhedral. $Q.E.D.$

SUM OF FUNCTIONS

• Let $f_i : \Re^n \mapsto (-\infty, \infty], i = 1, \ldots, m$, be proper convex functions, and let

$$
F=f_1+\cdots+f_m.
$$

• Assume that $\bigcap_{i=1}^m \text{ri}(\text{dom}(f_i)) \neq \emptyset$.

• Then

$$
\partial F(x) = \partial f_1(x) + \cdots + \partial f_m(x), \qquad \forall \ x \in \Re^n.
$$

Proof: We can write F in the form $F(x) = f(Ax)$, where A is the matrix defined by $Ax = (x, \ldots, x),$ and $f : \Re^{mn} \mapsto (-\infty, \infty]$ is the function

$$
f(x_1,\ldots,x_m)=f_1(x_1)+\cdots+f_m(x_m).
$$

Use the proof of the chain rule.

• Extension: If for some k, the functions f_i , $i =$ $1, \ldots, k$, are polyhedral, it is sufficient to assume

$$
\left(\bigcap_{i=1}^k \text{dom}(f_i)\right) \bigcap \left(\bigcap_{i=k+1}^m \text{ri}\big(\text{dom}(f_i)\big)\right) \neq \emptyset.
$$

CONSTRAINED OPTIMALITY CONDITION

• Let $f : \Re^n \mapsto (-\infty, \infty]$ be proper convex, let X be a convex subset of \mathbb{R}^n , and assume that one of the following four conditions holds:

(i) $\operatorname{ri}(\operatorname{dom}(f)) \cap \operatorname{ri}(X) \neq \emptyset$.

(ii) f is polyhedral and dom(f) ∩ ri(X) $\neq \emptyset$.

(iii) X is polyhedral and $\text{ri}(\text{dom}(f)) \cap X \neq \emptyset$.

(iv) f and X are polyhedral, and dom(f) ∩ $X \neq \emptyset$. Then, a vector x^* minimizes f over X iff there exists $g \in \partial f(x^*)$ such that $-g$ belongs to the normal cone $N_X(x^*)$, i.e.,

$$
g'(x - x^*) \ge 0, \qquad \forall \ x \in X.
$$

Proof: x^* minimizes

$$
F(x) = f(x) + \delta_X(x)
$$

if and only if $0 \in \partial F(x^*)$. Use the formula for subdifferential of sum. Q.E.D.

ILLUSTRATION OF OPTIMALITY CONDITION

• In the figure on the left, f is differentiable and the condition is that

$$
-\nabla f(x^*) \in N_C(x^*),
$$

which is equivalent to

$$
\nabla f(x^*)'(x - x^*) \ge 0, \qquad \forall \ x \in X.
$$

• In the figure on the right, f is nondifferentiable, and the condition is that

$$
-g \in N_C(x^*) \quad \text{for some } g \in \partial f(x^*).
$$

MIT OpenCourseWare <http://ocw.mit.edu>

6.253 Convex Analysis and Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: <http://ocw.mit.edu/terms>.