
LECTURE 12


LECTURE OUTLINE


•	 Convex Programming Duality 

•	 Optimality Conditions 

Mixtures of Linear and Convex Constraints • 

•	 Existence of Optimal Primal Solutions 

•	 Fenchel Duality 

•	 Conic Duality 

Reading: Sections 5.3.1-5.3.6 

Line of analysis so far: 

• Convex analysis (rel. int., dir. of recession, hy
perplanes, conjugacy) 

•	 MC/MC 

Nonlinear Farkas’ Lemma • 

•	 Linear programming (duality, opt. conditions)


• We now discuss convex programming, and its 
many special cases (reliance on Nonlinear Farkas’ 
Lemma) 

All figures are courtesy of Athena Scientific, and are used with permission.



CONVEX PROGRAMMING


Consider the problem 

minimize f(x) 
subject to	 x ∈ X, gj (x) ≤ 0, j  = 1, . . . , r,  

where X ⊂ �n is convex, and f : X �→ � and 
gj : X �→ � are convex. Assume f∗: finite.  

• Recall the connection with the max crossing 
problem in the MC/MC framework where M = 
epi(p) with  

p(u) =  inf  f(x)

x∈X, g(x)≤u 

•	 Consider the Lagrangian function 

L(x, µ) =  f(x) +  µ�g(x), 

the dual function 
� 

infx∈X L(x, µ) if  µ ≥ 0,q(µ) =  −∞	 otherwise 

and the dual problem of maximizing infx∈X L(x, µ) 
over µ ≥ 0. 



STRONG DUALITY THEOREM


• Assume that f∗ is finite, and that one of the 
following two conditions holds: 

(1) There exists x ∈ X such that g(x) < 0.


(2) The functions gj , j = 1, . . . , r, are affine, and 
there exists x ∈ ri(X) such that g(x) ≤ 0. 

Then q∗ = f∗ and the set of optimal solutions of 

• Replace f(x) by  f(x) − f∗ 

the dual problem is nonempty. Under condition 
(1) this set is also compact. 

Proof: so that 

�


f(x) − f∗ ≥ 0 for all x ∈ X w/ g(x) ≤ 0. Ap
ply Nonlinear Farkas’ Lemma. Then, there exist 
µ∗ 

j ≥ 0, s.t. 
r

f∗ ≤ f(x) + 
 µ∗ 
j gj (x), ∀ x ∈ X


j=1 

It follows that • 

f∗ ≤ inf 
�
f(x)+µ∗�g(x)

� 
≤ inf f(x) =  f∗. 

x∈X x∈X, g(x)≤0 


 

 

�


 

 

Thus equality holds throughout, and we have


r

f∗ = inf  f(x) + 
 µ∗ 
j gj (x)
 = q(µ∗)


x∈X

j=1




QUADRATIC PROGRAMMING DUALITY


• Consider the quadratic program 

minimize
 1 
2x�Qx + c�x


subject to Ax ≤ b, 

where Q is positive definite. 

• If f∗ is finite, then f∗ = q∗ and there exist 
both primal and dual optimal solutions, since the 
constraints are linear. 

Calculation of dual function: • 

q(µ) =  inf  
x∈�n 

{ 1 
2x�Qx + c�x + µ�(Ax − b)}


The infimum is attained for x = −Q−1(c + A�µ), 
and, after substitution and calculation, 

q(µ) =  −
1

2
µ�AQ−1A�µ − µ�(b + AQ−1c) −
1


2
c�Q−1c


• The dual problem, after a sign change, is

minimize
 1 

2µ�Pµ  + t�µ


subject to µ ≥ 0, 

where P = AQ−1A� and t = b + AQ−1c. 



OPTIMALITY CONDITIONS


• We have q∗ = f∗, and the vectors x∗ and µ∗ are 
optimal solutions of the primal and dual problems, 
respectively, iff x∗ is feasible, µ∗ ≥ 0, and 

x∗ ∈ arg min L(x, µ∗), µ∗ 
j gj (x∗) = 0, ∀ j. 

x∈X 

(1) 
Proof: If q∗ = f∗, and x∗, µ∗ are optimal, then 

f∗ = q∗ = q(µ∗) =  inf  L(x, µ∗) ≤ L(x∗, µ∗) 
x∈X 

r

= f(x∗) +  
� 

µj
∗gj (x∗) ≤ f(x∗), 

j=1 

where the last inequality follows from µ∗ 
j ≥ 0 and 

gj (x∗) ≤ 0 for all j. Hence equality holds through
out above, and (1) holds. 

Conversely, if x∗, µ∗ are feasible, and (1) holds, 

q(µ∗) =  inf  L(x, µ∗) =  L(x∗, µ∗) 
x∈X 

r

= f(x∗) +  
� 

µj
∗gj (x∗) =  f(x∗), 

j=1 

so q∗ = f∗, and x∗, µ∗ are optimal. Q.E.D.




QUADRATIC PROGRAMMING OPT. COND.


For the quadratic program 
1minimize 2 x�Qx + c�x 

subject to Ax ≤ b, 

where Q is positive definite, (x∗, µ∗) is a primal 
and dual optimal solution pair if and only if: 

• Primal and dual feasibility holds: 

Ax∗ ≤ b, µ∗ ≥ 0 

• Lagrangian optimality holds [x∗ minimizes L(x, µ∗) 
over x ∈ �n]. This yields 

x∗ = −Q−1(c + A�µ∗) 

• Complementary slackness holds [(Ax∗ −b)�µ∗ = 
0]. It can be written as 

µ∗ 
j > 0 ⇒ a�j x

∗ = bj , ∀ j = 1, . . . , r,  

where a�j is the jth row of A, and bj is the jth 
component of b. 



LINEAR EQUALITY CONSTRAINTS


• The problem is 

minimize f(x)

subject to x ∈ X, g(x) ≤ 0, Ax = b,


where X is convex, g(x) =  
�
g1(x), . . . , gr(x)

��, f : 
X �→ � and gj : X �→ �, j = 1, . . . , r, are convex. 

• Convert the constraint Ax = b to Ax ≤ b 
and −Ax ≤ −b, with corresponding dual variables 
λ+ ≥ 0 and λ− ≥ 0. 

•	 The Lagrangian function is 

f(x) +  µ�g(x) + (λ+ − λ−)�(Ax − b), 

and by introducing a dual variable λ = λ+ − λ−, 
with no sign restriction, it can be written as 

L(x, µ,λ ) =  f(x) +  µ�g(x) +  λ�(Ax − b). 

•	 The dual problem is 

maximize q(µ,λ ) ≡ inf L(x, µ,λ ) 
x∈X 

subject to µ ≥ 0, λ ∈ �m. 



DUALITY AND OPTIMALITY COND.


• Pure equality constraints: 

(a) Assume that f∗: finite and there exists x ∈
ri(X) such that Ax = b. Then  f∗ = q∗ and 
there exists a dual optimal solution. 

(b)	 f∗ = q∗, and (x∗, λ∗) are a primal and dual 
optimal solution pair if and only if x∗ is fea
sible, and 

x∗ ∈ arg min L(x,λ ∗) 
x∈X 

Note: No complementary slackness for equality 
constraints. 

Linear and nonlinear constraints: • 

(a) Assume f∗: finite, that there exists x ∈ X 
such that Ax = b and g(x) < 0, and that 
there exists x̃ ∈ ri(X) such that Ax̃ = b. 
Then q∗ = f∗ and there exists a dual optimal 
solution. 

(b)	 f∗ = q∗, and (x∗, µ∗, λ∗) are a primal and 
dual optimal solution pair if and only if x∗ 

is feasible, µ∗ ≥ 0, and 

x∗ ∈ arg min L(x, µ∗, λ∗), µ∗ 
j gj (x∗) = 0, ∀ j 

x∈X 



COUNTEREXAMPLE I


• Strong Duality Counterexample: Consider 

minimize f(x) =  e−
√

x1x2 

subject to x1 = 0, x ∈ X = {x | x ≥ 0} 

Here f∗ = 1 and f is convex (its Hessian is > 0 in  
the interior of X). The dual function is 

q(λ) =  inf  
�
e−
√

x1x2 + λx1
� 

= 

� 
0  if  λ ≥ 0, 

x≥0 −∞ otherwise, 

(when λ ≥ 0, the expression in braces is nonneg
ative for x ≥ 0 and can approach zero by taking 
x1 → 0 and x1x2 →∞). Thus q∗ = 0. 

• The relative interior assumption is violated. 

• As predicted by the corresponding MC/MC 
framework, the perturbation function 

� 0  if  u > 0, 
p(u) =  inf  e−

√
x1x2 = 1  if  u = 0, 

x1=u, x≥0 ∞ if u < 0, 

is not lower semicontinuous at u = 0.




COUNTEREXAMPLE VISUALIZATION

� 0 if u > 0,

p(u) =  inf  e−

√
x1x2 = 1 if u = 0,


x1=u, x≥0 if u < 0,∞ 
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• Connection with counterexample for preserva
tion of closedness under partial minimization. 



COUNTEREXAMPLE II


• Existence of Solutions Counterexample: 
Let X = �, f(x) =  x, g(x) =  x2. Then x∗ = 0  is  
the only feasible/optimal solution, and we have 

1 
q(µ) =  inf  2} = − , ∀ µ > 0, 

x∈�
{x + µx

4µ 

and q(µ) =  −∞ for µ ≤ 0, so that q = = 0.∗ f∗ 

However, there is no µ ≥ 0 such that q(µ∗) =∗ 

q∗ = 0. 

• The perturbation function is 

p(u) =  inf  x = 

� 
−√u if u ≥ 0,


2x if u < 0.≤u ∞ 

u 

p(u) 

0 

epi(p) 



FENCHEL DUALITY FRAMEWORK 

• Consider the problem 

minimize f1(x) +  f2(x) 
subject to x ∈ �n, 

where f1 : �n �→ (−∞,∞] and f2 : �n �→ (−∞,∞] 
are closed proper convex functions. 

• Convert to the equivalent problem 

minimize f1(x1) +  f2(x2) 
subject to x1 = x2, x1 ∈ dom(f1), x2 ∈ dom(f2) 

The dual function is • 

q(λ) = inf 
�
f1(x1) +  f2(x2) +  λ�(x2 − x1) 

x1∈dom(f1), x2∈dom(f2) 

= inf 
�
f1(x1) − λ�x1

� 
+ inf 

�
f2(x2) +  λ�x2

� 
x x1∈�n 2∈�n 

• Dual problem: maxλ{−f
�

1
(λ) − f
�


2
(−λ)}
 =

− minλ{−q(λ)} or 

minimize f
�
(λ) +  f
�
(−λ)
1
 2


subject to λ ∈ �n,


where f
�

1
 and f2


�
 are the conjugates.




FENCHEL DUALITY THEOREM 

Consider the Fenchel framework: • 

(a) If f∗ is finite and ri
�
dom(f1)

�
∩ri

�
dom(f2)

� 
=�


Ø, then  f = q∗ and there exists at least one
∗ 

dual optimal solution. 
(b) There holds f = q∗, and (x∗, λ∗) is a primal ∗ 

and dual optimal solution pair if and only if


x∗ ∈ arg min 
�
f1(x)−x�λ∗

�
, x∗ ∈ arg min 

�
f2(x)+x�λ∗

� 
x∈�n x∈�n 

Proof: For strong duality use the equality con
strained problem 

minimize f1(x1) +  f2(x2)

subject to x1 = x2, x1 ∈ dom(f1), x2 ∈ dom(f2)


and the fact 

ri
�
dom(f1)×dom(f2)

� 
= ri

�
dom(f1)

� �
dom(f2)

�
×

to satisfy the relative interior condition. 
For part (b), apply the optimality conditions 

(primal and dual feasibility, and Lagrangian opti
mality). 



GEOMETRIC INTERPRETATION


Slope λ 

Slope λ∗ 

x∗ x 

f1(x) 

−f2(x) 

q(λ) 

f∗ = q∗ 

−f � 
1 (λ) 

f� 
2 (−λ) 

• When dom(f1) = dom(f2) =  �n, and f1 and 
f2 are differentiable, the optimality condition is 
equivalent to 

λ∗ = ∇f1(x∗) =  −∇f2(x∗) 

• By reversing the roles of the (symmetric) primal 
and dual problems, we obtain alternative criteria 
for strong duality: if q∗ is finite and ri

�
dom(f1 

�)
�
∩

ri
�
−dom(f�)

� 
=� Ø, then  f∗ = q∗ and there exists 2 

at least one primal optimal solution. 



CONIC PROBLEMS


• A conic problem is to minimize a convex func
tion f : �n �→ (−∞, ∞] subject to a cone con
straint. 

•	 The most useful/popular special cases: 
− Linear-conic programming 

− Second order cone programming 

− Semidefinite programming 

involve minimization of a linear function over the 
intersection of an affine set and a cone. 

• Can be analyzed as a special case of Fenchel 
duality. 

• There are many interesting applications of conic 
problems, including in discrete optimization. 



CONIC DUALITY


• Consider minimizing f(x) over  x ∈ C, where  f : 
�n �→ (−∞,∞] is a closed proper convex function 
and C is a closed convex cone in �n. 

• We apply Fenchel duality with the definitions


f1(x) =  f(x), f2(x) =  
� 0  if  x ∈ C, 
∞ if x /∈ C. 

The conjugates are 

� �f1 (λ) =  sup  
�

λ�x−f(x)
�

, f2 (λ) =  sup λ�x = 
� 

0  if λ ∈ C∗, 

x∈�n 
x∈C 

∞ if λ ∈/ C∗, 

where C∗ = {λ | λ�x ≤ 0, ∀ x ∈ C}. 
• The dual problem is 

minimize f�(λ) 

subject to C,λ ∈ ˆ

where f� is the conjugate of f and 

Ĉ = {λ | λ�x ≥ 0, ∀ x ∈ C}. 

Ĉ and −Ĉ are called the dual and polar cones. 



CONIC DUALITY THEOREM


• Assume that the optimal value of the primal 
conic problem is finite, and that 

ri
�
dom(f)

� 
∩ ri(C) =� Ø.


Then, there is no duality gap and the dual problem 
has an optimal solution. 

• Using the symmetry of the primal and dual 
problems, we also obtain that there is no duality 
gap and the primal problem has an optimal solu
tion if the optimal value of the dual conic problem 
is finite, and 

ri
�
dom(f�)

� 
∩ ri(Ĉ) =� Ø. 



LINEAR CONIC PROGRAMMING


•	 Let f be linear over its domain, i.e., 
� 

c�x if x ∈ X,
f(x) =  ∞ if x /∈ X,


where c is a vector, and X = b+ S is an affine set.


• Primal problem is 

minimize c�x


subject to x − b ∈ S, x ∈ C.


We have
• 

f�(λ) =  sup  (λ − c)�x = sup  (λ − c)�(y + b) 
x−b∈S	 y∈S � 

(λ − c)�b if λ − c ∈ S⊥,= ∞	 if λ − c /∈ S.


• Dual problem is equivalent to 

minimize b�λ


subject to λ − c ∈ S⊥, C.
λ ∈ ˆ

• If X ∩ ri(C) =  Ø, there is no duality gap and 
there exists a dual optimal solution. 



ANOTHER APPROACH TO DUALITY


• Consider the problem 

minimize f(x) 
subject to x ∈ X, gj(x) ≤ 0, j  = 1, . . . , r  

and perturbation fn p(u) = infx∈X, g(x)≤u f(x) 

• Recall the MC/MC framework with M = epi(p). 
Assuming that p is convex and f∗ < ∞, by 1st 
MC/MC theorem, we have f∗ = q∗ if and only if 
p is lower semicontinuous at 0. 

• Duality Theorem: Assume that X, f , and gj 

are closed convex, and the feasible set is nonempty 
and compact. Then f∗ = q∗ and the set of optimal 
primal solutions is nonempty and compact. 

Proof: Use partial minimization theory w/ the 
function 

F (x, u) =  
� 

f(x) if  x ∈ X, g(x) ≤ u, 
∞ otherwise. 

p is obtained by the partial minimization: 

p(u) =  inf  F (x, u).

x∈�n 

Under the given assumption, p is closed convex.
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