## LECTURE 11

# LECTURE OUTLINE

- Min Common/Max Crossing Th. III
- Nonlinear Farkas Lemma/Linear Constraints
- Linear Programming Duality
- Convex Programming Duality

Reading: Sections 4.5, 5.1-5.3

Recall the MC/MC Theorem II: If  $-\infty < w^*$ and

 $0 \in D = \{ u \mid \text{there exists } w \in \Re \text{ with } (u, w) \in M \}$ 

then  $q^* = w^*$  and there exists  $\mu$  such that  $q(\mu) = q^*$ .



All figures are courtesy of Athena Scientific, and are used with permission.

# MC/MC TH. III - POLYHEDRAL

• Consider the MC/MC problems, and assume that  $-\infty < w^*$  and:

(1) M is a "horizontal translation" of  $\tilde{M}$  by -P,

$$M = \tilde{M} - \{(u,0) \mid u \in P\},\$$

where P: polyhedral and  $\tilde{M}$ : convex.



(2) We have  $\operatorname{ri}(\tilde{D}) \cap P \neq \emptyset$ , where

 $\tilde{D} = \left\{ u \mid \text{there exists } w \in \Re \text{ with } (u, w) \in \tilde{M} \right\}$ 

Then  $q^* = w^*$ , there is a max crossing solution, and all max crossing solutions  $\mu$  satisfy  $\mu' d \leq 0$ for all  $d \in R_P$ .

• Comparison with Th. II: Since  $D = \tilde{D} - P$ , the condition  $0 \in ri(D)$  of Theorem II is

 $\operatorname{ri}(\tilde{D}) \cap \operatorname{ri}(P) \neq \emptyset$ 

#### PROOF OF MC/MC TH. III

• Consider the disjoint convex sets  $C_1 = \{(u, v) \mid v > w \text{ for some } (u, w) \in \tilde{M} \}$  and  $C_2 = \{(u, w^*) \mid u \in P \}$   $[u \in P \text{ and } (u, w) \in \tilde{M} \text{ with } w^* > w \text{ contradicts the definition of } w^*]$ 



• Since  $C_2$  is polyhedral, there exists a separating hyperplane not containing  $C_1$ , i.e., a  $(\mu,\beta) \neq (0,0)$  such that

$$\beta w^* + \mu' z \le \beta v + \mu' x, \quad \forall \ (x,v) \in C_1, \ \forall \ z \in P$$
$$\inf_{(x,v)\in C_1} \left\{ \beta v + \mu' x \right\} < \sup_{(x,v)\in C_1} \left\{ \beta v + \mu' x \right\}$$

Since (0, 1) is a direction of recession of  $C_1$ , we see that  $\beta \ge 0$ . Because of the relative interior point assumption,  $\beta \ne 0$ , so we may assume that  $\beta = 1$ .

### **PROOF (CONTINUED)**

• Hence,

$$w^* + \mu' z \leq \inf_{(u,v) \in C_1} \{ v + \mu' u \}, \qquad \forall \ z \in P,$$
 so that

$$w^* \le \inf_{\substack{(u,v) \in C_1, z \in P}} \{v + \mu'(u - z)\}$$
  
=  $\inf_{\substack{(u,v) \in \tilde{M} - P}} \{v + \mu'u\}$   
=  $\inf_{\substack{(u,v) \in M}} \{v + \mu'u\}$   
=  $q(\mu)$ 

Using  $q^* \leq w^*$  (weak duality), we have  $q(\mu) = q^* = w^*$ .

Proof that all max crossing solutions  $\mu$  satisfy  $\mu' d \leq 0$  for all  $d \in R_P$ : follows from

$$q(\mu) = \inf_{(u,v)\in C_1, z\in P} \{v + \mu'(u-z)\}$$

so that  $q(\mu) = -\infty$  if  $\mu' d > 0$ . **Q.E.D.** 

• Geometrical intuition: every (0, -d) with  $d \in R_P$ , is direction of recession of M.

#### MC/MC TH. III - A SPECIAL CASE

Consider the MC/MC framework, and assume:
(1) For a convex function f : ℜ<sup>m</sup> → (-∞, ∞], an r × m matrix A, and a vector b ∈ ℜ<sup>r</sup>:

$$M = \left\{ (u, w) \mid \text{for some } (x, w) \in \operatorname{epi}(f), \, Ax - b \le u \right\}$$

so  $M = \tilde{M} + \text{Positive Orthant}$ , where



$$\tilde{M} = \left\{ (Ax - b, w) \mid (x, w) \in \operatorname{epi}(f) \right\}$$

(2) There is an  $x \in ri(dom(f))$  s. t.  $Ax - b \leq 0$ . Then  $q^* = w^*$  and there is a  $\mu \geq 0$  with  $q(\mu) = q^*$ .

- Also  $M = M \approx \operatorname{epi}(p)$ , where  $p(u) = \inf_{Ax-b \leq u} f(x)$ .
- We have  $w^* = p(0) = \inf_{Ax-b \le 0} f(x)$ .

# NONL. FARKAS' L. - POLYHEDRAL ASSUM.

• Let  $X \subset \Re^n$  be convex, and  $f: X \mapsto \Re$  and  $g_j:$  $\Re^n \mapsto \Re, j = 1, \ldots, r$ , be linear so g(x) = Ax - bfor some A and b. Assume that

$$f(x) \ge 0, \quad \forall x \in X \text{ with } Ax - b \le 0$$

Let

$$Q^* = \{ \mu \mid \mu \ge 0, \ f(x) + \mu'(Ax - b) \ge 0, \ \forall \ x \in X \}.$$

Assume that there exists a vector  $\overline{x} \in \operatorname{ri}(X)$  such that  $A\overline{x} - b \leq 0$ . Then  $Q^*$  is nonempty.

**Proof:** As before, apply special case of MC/MC Th. III of preceding slide, using the fact  $w^* \ge 0$ , implied by the assumption.



#### (LINEAR) FARKAS' LEMMA

• Let A be an  $m \times n$  matrix and  $c \in \Re^m$ . The system  $Ay = c, y \ge 0$  has a solution if and only if

$$A'x \le 0 \qquad \Rightarrow \qquad c'x \le 0. \tag{(*)}$$

• Alternative/Equivalent Statement: If  $P = cone\{a_1, \ldots, a_n\}$ , where  $a_1, \ldots, a_n$  are the columns of A, then  $P = (P^*)^*$  (Polar Cone Theorem).

**Proof:** If  $y \in \Re^n$  is such that  $Ay = c, y \ge 0$ , then y'A'x = c'x for all  $x \in \Re^m$ , which implies Eq. (\*).

Conversely, apply the Nonlinear Farkas' Lemma with f(x) = -c'x, g(x) = A'x, and  $X = \Re^m$ . Condition (\*) implies the existence of  $\mu \ge 0$  such that

$$-c'x + \mu'A'x \ge 0, \qquad \forall \ x \in \Re^m,$$

or equivalently

$$(A\mu - c)'x \ge 0, \qquad \forall \ x \in \Re^m,$$

or  $A\mu = c$ .

# LINEAR PROGRAMMING DUALITY

• Consider the linear program

minimize c'xsubject to  $a'_j x \ge b_j$ ,  $j = 1, \ldots, r$ ,

where  $c \in \Re^n$ ,  $a_j \in \Re^n$ , and  $b_j \in \Re$ ,  $j = 1, \ldots, r$ .

• The dual problem is

maximize 
$$b'\mu$$
  
subject to  $\sum_{j=1}^{r} a_j \mu_j = c, \quad \mu \ge 0.$ 

#### • Linear Programming Duality Theorem:

(a) If either  $f^*$  or  $q^*$  is finite, then  $f^* = q^*$  and both the primal and the dual problem have optimal solutions.

(b) If 
$$f^* = -\infty$$
, then  $q^* = -\infty$ .

(c) If  $q^* = \infty$ , then  $f^* = \infty$ .

**Proof:** (b) and (c) follow from weak duality. For part (a): If  $f^*$  is finite, there is a primal optimal solution  $x^*$ , by existence of solutions of quadratic programs. Use Farkas' Lemma to construct a dual feasible  $\mu^*$  such that  $c'x^* = b'\mu^*$  (next slide).

# **PROOF OF LP DUALITY (CONTINUED)**



• Let  $x^*$  be a primal optimal solution, and let  $J = \{j \mid a'_j x^* = b_j\}$ . Then,  $c'y \ge 0$  for all y in the cone of "feasible directions"

$$D = \{ y \mid a'_j y \ge 0, \forall j \in J \}$$

By Farkas' Lemma, for some scalars  $\mu_j^* \ge 0$ , c can be expressed as

$$c = \sum_{j=1}^{r} \mu_j^* a_j, \quad \mu_j^* \ge 0, \ \forall \ j \in J, \quad \mu_j^* = 0, \ \forall \ j \notin J.$$

Taking inner product with  $x^*$ , we obtain  $c'x^* = b'\mu^*$ , which in view of  $q^* \leq f^*$ , shows that  $q^* = f^*$  and that  $\mu^*$  is optimal.

### LINEAR PROGRAMMING OPT. CONDITIONS

A pair of vectors  $(x^*, \mu^*)$  form a primal and dual optimal solution pair if and only if  $x^*$  is primalfeasible,  $\mu^*$  is dual-feasible, and

$$\mu_j^*(b_j - a'_j x^*) = 0, \quad \forall \ j = 1, \dots, r. \quad (*)$$

**Proof:** If  $x^*$  is primal-feasible and  $\mu^*$  is dual-feasible, then

$$b'\mu^* = \sum_{j=1}^r b_j \mu_j^* + \left(c - \sum_{j=1}^r a_j \mu_j^*\right)' x^*$$
  
=  $c'x^* + \sum_{j=1}^r \mu_j^* (b_j - a'_j x^*)$  (\*\*)

So if Eq. (\*) holds, we have  $b'\mu^* = c'x^*$ , and weak duality implies that  $x^*$  is primal optimal and  $\mu^*$ is dual optimal.

Conversely, if  $(x^*, \mu^*)$  form a primal and dual optimal solution pair, then  $x^*$  is primal-feasible,  $\mu^*$  is dual-feasible, and by the duality theorem, we have  $b'\mu^* = c'x^*$ . From Eq. (\*\*), we obtain Eq. (\*).

### **CONVEX PROGRAMMING**

Consider the problem

minimize f(x)subject to  $x \in X$ ,  $g_j(x) \le 0$ ,  $j = 1, \ldots, r$ ,

where  $X \subset \Re^n$  is convex, and  $f : X \mapsto \Re$  and  $g_j : X \mapsto \Re$  are convex. Assume  $f^*$ : finite.

• Consider the Lagrangian function

$$L(x,\mu) = f(x) + \mu' g(x),$$

the dual function

$$q(\mu) = \begin{cases} \inf_{x \in X} L(x, \mu) & \text{if } \mu \ge 0, \\ -\infty & \text{otherwise} \end{cases}$$

and the dual problem of maximizing  $\inf_{x \in X} L(x, \mu)$ over  $\mu \ge 0$ .

• Recall this is the max crossing problem in the MC/MC framework where M = epi(p) with

$$p(u) = \inf_{x \in X, \ g(x) \le u} f(x)$$

### STRONG DUALITY THEOREM

• Assume that  $f^*$  is finite, and that one of the following two conditions holds:

- (1) There exists  $x \in X$  such that g(x) < 0.
- (2) The functions  $g_j$ , j = 1, ..., r, are affine, and there exists  $x \in ri(X)$  such that  $g(x) \leq 0$ .

Then  $q^* = f^*$  and the set of optimal solutions of the dual problem is nonempty. Under condition (1) this set is also compact.

• Replace f(x) by  $f(x) - f^*$  so that  $f(x) - f^* \ge 0$ for all  $x \in X$  w/  $g(x) \le 0$ . Apply Nonlinear Farkas' Lemma. Then, there exist  $\mu_j^* \ge 0$ , s.t.

$$f^* \le f(x) + \sum_{j=1}^r \mu_j^* g_j(x), \qquad \forall \ x \in X$$

• It follows that

$$f^* \le \inf_{x \in X} \{ f(x) + {\mu^*}' g(x) \} \le \inf_{x \in X, \ g(x) \le 0} f(x) = f^*.$$

Thus equality holds throughout, and we have

$$f^* = \inf_{x \in X} \left\{ f(x) + \sum_{j=1}^r \mu_j^* g_j(x) \right\} = q(\mu^*)$$

# QUADRATIC PROGRAMMING DUALITY

• Consider the quadratic program

 $\begin{array}{ll} \text{minimize} & \frac{1}{2}x'Qx + c'x \\ \text{subject to} & Ax \leq b, \end{array}$ 

where Q is positive definite.

• If  $f^*$  is finite, then  $f^* = q^*$  and there exist both primal and dual optimal solutions, since the constraints are linear.

• Calculation of dual function:

$$q(\mu) = \inf_{x \in \Re^n} \left\{ {}_{\frac{1}{2}} x' Q x + c' x + \mu' (A x - b) \right\}$$

The infimum is attained for  $x = -Q^{-1}(c + A'\mu)$ , and, after substitution and calculation,

$$q(\mu) = -\frac{1}{2}\mu' AQ^{-1}A'\mu - \mu'(b + AQ^{-1}c) - \frac{1}{2}c'Q^{-1}c$$

• The dual problem, after a sign change, is minimize  ${}_{2}^{1}\mu'P\mu + t'\mu$ subject to  $\mu \ge 0$ ,

where  $P = AQ^{-1}A'$  and  $t = b + AQ^{-1}c$ .

MIT OpenCourseWare http://ocw.mit.edu

6.253 Convex Analysis and Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.