
LECTURE 11
 

LECTURE OUTLINE
 

• Min Common/Max Crossing Th. III 

• Nonlinear Farkas Lemma/Linear Constraints 

• Linear Programming Duality 

• Convex Programming Duality 

Reading: Sections 4.5, 5.1-5.3 

Recall the MC/MC Theorem II: If −∞ < w∗
 

and
 

0 ∈ D = 
�
u | there exists w ∈ �  with (u, w) ∈ M}
 

then q∗ = w∗ and there exists µ such that q(µ) =  
q∗. 

D 

u 

w 

M 

M 

0 

w∗ = q∗ 

D 

w∗ 

u 

w 

M 

0 

q∗ 

(µ, 1) 
f l 

All figures are courtesy of Athena Scientific, and are used with permission. 



MC/MC TH. III - POLYHEDRAL
 

• Consider the MC/MC problems, and assume 
that −∞ < w∗ and: 

(1) M is a “horizontal translation” of M̃ by −P ,


M = M̃ − 
�
(u, 0) | u ∈ P 

�
, 

where P : polyhedral and M̃ : convex. 
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M = M̃ − 
�
(u, 0) | u ∈ P 

� 
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(2) We have ri(D̃) ∩ P =� Ø, where 

˜ ˜D = 
�
u | there exists w ∈ �  with (u, w) ∈ M} 

Then q∗ = w∗, there is a max crossing solution, 
and all max crossing solutions µ satisfy µ�d ≤ 0 
for all d ∈ RP . 

• Comparison with Th. II: Since D = D̃ − P , 
the condition 0 ∈ ri(D) of Theorem II is 

ri(D̃) ∩ ri(P ) = Ø� 



PROOF OF MC/MC TH. III
 

Consider the disjoint convex sets C1 = 
�
(u, v) 
• 

˜ 
|


v > w  for some (u, w) ∈ M
� 

and C2 = 
�
(u, w∗) 

u ∈ P 
� 

[u ∈ P and (u, w) ∈ M̃ with w∗ > w

| 

contradicts the definition of w∗] 

P 

• Since C2 is polyhedral, there exists a separat
ing hyperplane not containing C1, i.e., a  (µ,β ) =�
(0, 0) such that 

βw∗ + µ�z ≤ βv + µ�x, ∀ (x, v) ∈ C1, ∀ z ∈ P 

inf 
�
βv + µ�x

� 
< sup 

�
βv + µ�x

� 

(x,v)∈C1 (x,v)∈C1 

Since (0, 1) is a direction of recession of C1, we  see  
  
that β ≥ 0. Because of the relative interior point
 
assumption, β = 0, so we may assume that� β = 1.
 



PROOF (CONTINUED)
 

•	 Hence, 

w∗ + µ�z ≤ inf ∀ z ∈ P, 
(u,v)∈C1

{v + µ�u}, 
so that 

w∗	 inf 
�
v + µ�(u − z)

�
≤ 

(u,v)∈C1, z∈P 

=  inf  
(u,v)∈M̃ −P 

{v + µ�u} 

=  	inf  
(u,v)∈M

{v + µ�u} 

= q(µ) 

Using q∗ ≤ w∗ (weak duality), we have q(µ) =  
q∗ = w∗. 

Proof that all max crossing solutions µ sat
isfy µ�d ≤ 0 for all d ∈ RP : follows from 

q(µ) =  inf  
�
v + µ�(u − z)

� 

(u,v)∈C1, z∈P 

so that q(µ) =  −∞ if µ�d >  0. Q.E.D. 

• Geometrical intuition: every (0, −d) with  d ∈
RP , is direction of recession of M . 



MC/MC TH. III - A SPECIAL CASE
 

• Consider the MC/MC framework, and assume:
 

(1) For a convex function f : �m �→ (−∞, ∞], 
an r × m matrix A, and a vector b ∈ �r: 

M = 
�
(u, w) | for some (x, w) ∈ epi(f), Ax  − b ≤ u

� 

so M = M̃ + Positive Orthant, where 

M̃ = 
�
(Ax − b, w) | (x, w) ∈ epi(f)

�
 

� 

(2) There is an x ∈ ri(dom(f)) s. t. Ax − b ≤ 0. 

Then q∗ = w∗ and there is a µ ≥ 0 with  q(µ) =  q∗. 

• Also M = M ≈ epi(p), where p(u) = infAx−b≤u f(x). 

• We have w∗ = p(0) = infAx−b≤0 f(x). 



� � 

NONL. FARKAS’ L. - POLYHEDRAL ASSU M.


n• Let X ⊂ � be convex, and f : X → �� and gj : 
�n � , j = 1, . . . , r, be linear so g(x) =  Ax − b→ �
for some A and b. Assume that 

f(x) ≥ 0, ∀ x ∈ X with Ax − b ≤ 0


Let 

Q∗ = μ | μ ≥ 0, f(x)+μ′(Ax−b) ≥ 0, ∀ x ∈ X .  

Assume that there exists a vector x ∈ ri(X) such

that Ax − b ≤ 0. Then Q∗ is nonempty. 

Proof: As before, apply special case of MC/MC 
Th. III of preceding slide, using the fact w ∗ ≥ 0, 
implied by the assumption. 
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(LINEAR) FARKAS’ LEMMA
 

m• Let A be an m × n matrix and c ∈ � . The  
system Ay = c, y ≥ 0 has a solution if and only if 

A�x ≤ 0 ⇒ c�x ≤ 0. (∗) 

• Alternative/Equivalent Statement: If P = 
cone{a1, . . . , an}, where  a1, . . . , an are the columns 
of A, then  P = (P ∗)∗ (Polar Cone Theorem). 

Proof: If y ∈ �n is such that Ay = c, y ≥ 0, then 
y�A�x = c�x for all x ∈ �m, which implies Eq. (*). 

Conversely, apply the Nonlinear Farkas’ Lemma 
with f(x) =  −c�x, g(x) =  A�x, and X = �m. 
Condition (*) implies the existence of µ ≥ 0 such  
that 

−c�x + µ�A�x ≥ 0, ∀ x ∈ �m, 

or equivalently 

(Aµ− c)�x ≥ 0, ∀ x ∈ �m, 

or Aµ = c. 



LINEAR PROGRAMMING DUALITY
 

• Consider the linear program 

minimize c�x
 

subject to a�j x ≥ bj , j  = 1, . . . , r, 
  

where c ∈ �n, aj ∈ �n, and bj ∈ �, j = 1, . . . , r. 

• The dual problem is 

maximize b�µ 
r 

subject to 
� 

aj µj = c, µ ≥ 0. 
j=1 

• Linear Programming Duality Theorem: 

(a) If either f∗ or q∗ is finite, then f∗ = q∗ and 
both the primal and the dual problem have 
optimal solutions. 

(b) If f∗ = −∞, then  q∗ = −∞. 

(c) If q∗ = ∞, then  f∗ = ∞. 

Proof: (b) and (c) follow from weak duality. For 
part (a): If f∗ is finite, there is a primal optimal 
solution x∗, by existence of solutions of quadratic 
programs. Use Farkas’ Lemma to construct a dual 
feasible µ∗ such that c�x∗ = b�µ∗ (next slide). 



PROOF OF LP DUALITY (CONTINUED)
 

• Let x∗ be a primal optimal solution, and let 
J = {j | a�j x

∗ = bj }. Then,  c�y ≥ 0 for all y in the 
cone of “feasible directions” 

D = {y | a�j y ≥ 0, ∀ j ∈ J} 

By Farkas’ Lemma, for some scalars µ∗ 
j ≥ 0, c can 

be expressed as 

r 

c = 
� 

µ∗j aj , µ∗j ≥ 0, ∀ j ∈ J, µ∗ = 0, ∀ j /∈ J.j
 
j=1
 

Taking inner product with x∗, we obtain c�x∗ = 
b�µ∗, which in view of q∗ ≤ f∗, shows that q∗ = f∗ 

and that µ∗ is optimal. 



LINEAR PROGRAMMING OPT. CONDITIONS
 

A pair of vectors (x∗, µ∗) form a primal and dual 
optimal solution pair if and only if x∗ is primal-
feasible, µ∗ is dual-feasible, and 

µ∗(bj − a�j x
∗) = 0, ∀ j = 1, . . . , r.  (∗)j 

Proof: If x∗ is primal-feasible and µ∗ is dual-
feasible, then 









+
 

�


j=1 j=1 

r 
(∗∗) 

= c�x∗ +
 

�
 
r�
 r�
 

bj µ∗j
 

c−
 aj µ∗j
 


b�µ∗
 x∗
=
 

µ∗j (bj − a�j x
∗)


j=1 

So if Eq. (*) holds, we have b�µ∗ = c�x∗, and weak 
duality implies that x∗ is primal optimal and µ∗ 

is dual optimal. 
Conversely, if (x∗, µ∗) form a primal and dual 

optimal solution pair, then x∗ is primal-feasible, 
µ∗ is dual-feasible, and by the duality theorem, we 
have b�µ∗ = c�x∗. From Eq. (**), we obtain Eq. 
(*). 



CONVEX PROGRAMMING
 

Consider the problem 

minimize f(x) 
subject to	 x ∈ X, gj (x) ≤ 0, j  = 1, .  . . ,  r,  

where X ⊂ �n is convex, and f : X �→ � and 
gj : X �→ � are convex. Assume f∗: finite.  

•	 Consider the Lagrangian function 

L(x, µ) =  f(x) +  µ�g(x), 

the dual function 
� 

infx∈X L(x, µ) if  µ ≥ 0,q(µ) =  −∞	 otherwise 

and the dual problem of maximizing infx∈X L(x, µ) 
over µ ≥ 0. 

• Recall this is the max crossing problem in the 
MC/MC framework where M = epi(p) with  

p(u) =  inf  f(x)
 
x∈X, g(x)≤u 



STRONG DUALITY THEOREM
 

• Assume that f∗ is finite, and that one of the 
following two conditions holds: 

(1) There exists x ∈ X such that g(x) < 0. 

(2) The functions gj , j = 1, . . . , r, are affine, and 
there exists x ∈ ri(X) such that g(x) ≤ 0. 

Then q∗ = f∗ and the set of optimal solutions of 
the dual problem is nonempty. Under condition 
(1) this set is also compact. 

• Replace f(x) by  f(x)−f∗ so that f(x)−f∗ ≥ 0 
for all x ∈ X w/ g(x) ≤ 0. Apply Nonlinear 
Farkas’ Lemma. Then, there exist µ∗ 

j ≥ 0, s.t. 
r 

f∗ ≤ f(x) +  

�
 

µj
∗gj (x), ∀ x ∈ X
 

j=1 

It follows that • 

f∗ ≤ inf 
�
f(x)+µ∗�g(x)

� 
≤ inf f(x) =  f∗. 

x∈X x∈X, g(x)≤0 


 





 




Thus equality holds throughout, and we have
 

r�
 
f(x) +  
  µ∗ 

j gj (x)
f∗ = inf 
 = q(µ∗)
 
x∈X
 

j=1
 



QUADRATIC PROGRAMMING DUALITY
 

• Consider the quadratic program 
1minimize
 2 x�Qx + c�x
 

subject to Ax ≤ b, 

where Q is positive definite. 

• If f∗ is finite, then f∗ = q∗ and there exist 
both primal and dual optimal solutions, since the 
constraints are linear. 

Calculation of dual function: • 

q(µ) =  inf  2 x�Qx + c�x + µ�(Ax − b)}
 
x∈�n 

{ 1 

The infimum is attained for x = −Q−1(c + A�µ), 
and, after substitution and calculation, 

q(µ) =  −
1
µ�AQ−1A�µ − µ�(b + AQ−1c) −
1
c�Q−1c
2
 2
 

• The dual problem, after a sign change, is
 
1minimize
 2 µ�Pµ  + t�µ
 

subject to µ ≥ 0, 

where P = AQ−1A� and t = b + AQ−1c. 
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