LECTURE 11

LECTURE OUTLINE

- Min Common/Max Crossing Th. III
- Nonlinear Farkas Lemma/Linear Constraints
- Linear Programming Duality
- Convex Programming Duality

Reading: Sections 4.5, 5.1-5.3

Recall the MC/MC Theorem II: If $-\infty < w^*$ and

 $0 \in D = \{u \mid \text{there exists } w \in \Re \text{ with } (u, w) \in M\}$

then $q^* = w^*$ and there exists μ such that $q(\mu) =$ q^* .

All figures are courtesy of Athena Scientific, and are used with permission.

MC/MC TH. III - POLYHEDRAL

• Consider the MC/MC problems, and assume that $-\infty < w^*$ and:

(1) M is a "horizontal translation" of \tilde{M} by $-P$,

$$
M = \tilde{M} - \{(u, 0) \mid u \in P\},\
$$

where P : polyhedral and \tilde{M} : convex.

(2) We have ri $(D) \cap P \neq \emptyset$, where

 $\tilde{D} = \{u \mid \text{there exists } w \in \Re \text{ with } (u, w) \in \tilde{M} \}$

Then $q^* = w^*$, there is a max crossing solution, and all max crossing solutions μ satisfy $\mu' d \leq 0$ for all $d \in R_P$.

• Comparison with Th. II: Since $D = \tilde{D} - P$, the condition $0 \in \text{ri}(D)$ of Theorem II is

 $\operatorname{ri}(\tilde{D}) \cap \operatorname{ri}(P) \neq \emptyset$

PROOF OF MC/MC TH. III

• Consider the *disjoint* convex sets $C_1 = \{(u, v) \mid$ $v > w$ for some $(u, w) \in \tilde{M}$ and $C_2 = \{(u, w^*) \mid$ $u \in P$ [$u \in P$ and $(u, w) \in \tilde{M}$ with $w^* > w$ contradicts the definition of w^*

Since C_2 is polyhedral, there exists a separating hyperplane not containing C_1 , i.e., a $(\mu,\beta) \neq$ $(0, 0)$ such that

$$
\beta w^* + \mu' z \le \beta v + \mu' x, \quad \forall (x, v) \in C_1, \ \forall \ z \in P
$$

$$
\inf_{(x, v) \in C_1} \{ \beta v + \mu' x \} < \sup_{(x, v) \in C_1} \{ \beta v + \mu' x \}
$$

Since $(0, 1)$ is a direction of recession of C_1 , we see that $\beta \geq 0$. Because of the relative interior point assumption, $\beta \neq 0$, so we may assume that $\beta = 1$.

PROOF (CONTINUED)

• Hence,

$$
w^* + \mu' z \le \inf_{(u,v)\in C_1} \{v + \mu'u\}, \qquad \forall \ z \in P,
$$

so that

$$
w^* \leq \inf_{(u,v)\in C_1, z\in P} \{v + \mu'(u-z)\}
$$

=
$$
\inf_{(u,v)\in \tilde{M}-P} \{v + \mu'u\}
$$

=
$$
\inf_{(u,v)\in M} \{v + \mu'u\}
$$

=
$$
q(\mu)
$$

Using $q^* \leq w^*$ (weak duality), we have $q(\mu)$ = $q^* = w^*$.

Proof that all max crossing solutions μ satisfy $\mu' d \leq 0$ for all $d \in R_P$: follows from

$$
q(\mu) = \inf_{(u,v) \in C_1, \, z \in P} \{v + \mu'(u - z)\}
$$

so that $q(\mu) = -\infty$ if $\mu' d > 0$. Q.E.D.

• Geometrical intuition: every $(0, -d)$ with $d \in$ R*^P* , is direction of recession of M.

MC/MC TH. III - A SPECIAL CASE

• Consider the MC/MC framework, and assume: (1) For a convex function $f : \Re^m \mapsto (-\infty, \infty],$ an $r \times m$ matrix A, and a vector $b \in \mathbb{R}^r$:

$$
M = \left\{ (u, w) \mid \text{for some } (x, w) \in \text{epi}(f), Ax - b \le u \right\}
$$

so $M = \tilde{M}$ + Positive Orthant, where

$$
\tilde{M} = \{(Ax - b, w) \mid (x, w) \in \text{epi}(f)\}
$$

(2) There is an $x \in \text{ri}(\text{dom}(f))$ s. t. $Ax - b \leq 0$. Then $q^* = w^*$ and there is a $\mu \geq 0$ with $q(\mu) = q^*$.

- Also $M = M \approx \text{epi}(p)$, where $p(u) = \inf_{Ax-b \le u} f(x)$.
- We have $w^* = p(0) = \inf_{Ax-b \le 0} f(x)$.

NONL. FARKAS' L. - POLYHEDRAL ASSUM.

• Let $X \subset \mathbb{R}^n$ be convex, and $f: X \mapsto \mathbb{R}$ and g_j : $\mathbb{R}^n \mapsto \mathbb{R}, j = 1, \ldots, r$, be linear so $g(x) = Ax - b$ for some A and b. Assume that

$$
f(x) \ge 0, \qquad \forall \ x \in X \text{ with } Ax - b \le 0
$$

Let

$$
Q^* = \{ \mu \mid \mu \ge 0, \ f(x) + \mu'(Ax - b) \ge 0, \ \forall \ x \in X \}.
$$

Assume that there exists a vector $\overline{x} \in \text{ri}(X)$ such that $A\overline{x} - b \leq 0$. Then Q^* is nonempty.

Proof: As before, apply special case of MC/MC Th. III of preceding slide, using the fact $w^* \geq 0$, implied by the assumption.

(LINEAR) FARKAS' LEMMA

Let A be an $m \times n$ matrix and $c \in \mathbb{R}^m$. The system $Ay = c, y \ge 0$ has a solution if and only if

$$
A'x \le 0 \qquad \Rightarrow \qquad c'x \le 0. \tag{*}
$$

• Alternative/Equivalent Statement: If $P=$ $cone{a_1, \ldots, a_n}$, where a_1, \ldots, a_n are the columns of A, then $P = (P^*)^*$ (Polar Cone Theorem).

Proof: If $y \in \mathbb{R}^n$ is such that $Ay = c$, $y \ge 0$, then $y'A'x = c'x$ for all $x \in \mathbb{R}^m$, which implies Eq. (*).

Conversely, apply the Nonlinear Farkas' Lemma with $f(x) = -c'x$, $g(x) = A'x$, and $X = \mathbb{R}^m$. Condition (*) implies the existence of $\mu \geq 0$ such that

$$
-c'x + \mu' A'x \ge 0, \qquad \forall x \in \Re^m,
$$

or equivalently

$$
(A\mu - c)'x \ge 0, \qquad \forall \ x \in \Re^m,
$$

or $A\mu = c$.

LINEAR PROGRAMMING DUALITY

• Consider the linear program

minimize $c'x$ subject to $a'_j x \ge b_j$, $j = 1, \ldots, r$,

where $c \in \Re^n$, $a_j \in \Re^n$, and $b_j \in \Re$, $j = 1, \ldots, r$.

• The dual problem is

maximize
$$
b'\mu
$$

subject to
$$
\sum_{j=1}^{r} a_j \mu_j = c, \quad \mu \ge 0.
$$

• Linear Programming Duality Theorem:

- (a) If either f^* or q^* is finite, then $f^* = q^*$ and both the primal and the dual problem have optimal solutions.
- (b) If $f^* = -\infty$, then $q^* = -\infty$.
- (c) If $q^* = \infty$, then $f^* = \infty$.

Proof: (b) and (c) follow from weak duality. For part (a): If f^* is finite, there is a primal optimal solution x[∗] , by existence of solutions of quadratic programs. Use Farkas' Lemma to construct a dual feasible μ^* such that $c'x^* = b'\mu^*$ (next slide).

PROOF OF LP DUALITY (CONTINUED)

Let x^* be a primal optimal solution, and let $J = \{j \mid a'_j x^* = b_j\}.$ Then, $c'y \ge 0$ for all y in the cone of "feasible directions"

$$
D = \{ y \mid a'_j y \ge 0, \forall j \in J \}
$$

By Farkas' Lemma, for some scalars $\mu_j^* \geq 0$, *c* can be expressed as

$$
c = \sum_{j=1}^{r} \mu_j^* a_j, \quad \mu_j^* \ge 0, \ \forall \ j \in J, \ \mu_j^* = 0, \ \forall \ j \notin J.
$$

Taking inner product with x^* , we obtain $c'x^* =$ $b'\mu^*$, which in view of $q^* \leq f^*$, shows that $q^* = f^*$ and that μ^* is optimal.

LINEAR PROGRAMMING OPT. CONDITIONS

A pair of vectors (x^*, μ^*) form a primal and dual optimal solution pair if and only if x^* is primalfeasible, μ^* is dual-feasible, and

$$
\mu_j^*(b_j - a'_j x^*) = 0, \qquad \forall j = 1, ..., r.
$$
 (*)

Proof: If x^* is primal-feasible and μ^* is dualfeasible, then

$$
b'\mu^* = \sum_{j=1}^r b_j \mu_j^* + \left(c - \sum_{j=1}^r a_j \mu_j^*\right)' x^*
$$

= $c'x^* + \sum_{j=1}^r \mu_j^*(b_j - a'_j x^*)$ (*)

So if Eq. (*) holds, we have $b'\mu^* = c'x^*$, and weak duality implies that x^* is primal optimal and μ^* is dual optimal.

Conversely, if (x^*, μ^*) form a primal and dual optimal solution pair, then x^* is primal-feasible, μ^* is dual-feasible, and by the duality theorem, we have $b'\mu^* = c'x^*$. From Eq. (**), we obtain Eq. $(*)$.

CONVEX PROGRAMMING

Consider the problem

minimize $f(x)$ subject to $x \in X$, $g_j(x) \leq 0$, $j = 1, \ldots, r$,

where $X \subset \mathbb{R}^n$ is convex, and $f : X \mapsto \mathbb{R}$ and $g_j: X \mapsto \Re$ are convex. Assume f^* : finite.

• Consider the Lagrangian function

$$
L(x, \mu) = f(x) + \mu' g(x),
$$

the dual function

$$
q(\mu) = \begin{cases} \inf_{x \in X} L(x, \mu) & \text{if } \mu \ge 0, \\ -\infty & \text{otherwise} \end{cases}
$$

and the dual problem of maximizing inf_{$x \in X$} $L(x, \mu)$ over $\mu \geq 0$.

• Recall this is the max crossing problem in the MC/MC framework where $M = \text{epi}(p)$ with

$$
p(u) = \inf_{x \in X, g(x) \le u} f(x)
$$

STRONG DUALITY THEOREM

Assume that f^* is finite, and that one of the following two conditions holds:

- (1) There exists $x \in X$ such that $g(x) < 0$.
- (2) The functions g_j , $j = 1, \ldots, r$, are affine, and there exists $x \in \text{ri}(X)$ such that $g(x) \leq 0$.

Then $q^* = f^*$ and the set of optimal solutions of the dual problem is nonempty. Under condition (1) this set is also compact.

• Replace $f(x)$ by $f(x) - f^*$ so that $f(x) - f^* \geq 0$ for all $x \in X$ w/ $g(x) \leq 0$. Apply Nonlinear Farkas' Lemma. Then, there exist $\mu_j^* \geq 0$, s.t.

$$
f^* \le f(x) + \sum_{j=1}^r \mu_j^* g_j(x), \qquad \forall \ x \in X
$$

• It follows that

$$
f^* \le \inf_{x \in X} \{ f(x) + \mu^* g(x) \} \le \inf_{x \in X, \, g(x) \le 0} f(x) = f^*.
$$

Thus equality holds throughout, and we have

$$
f^* = \inf_{x \in X} \left\{ f(x) + \sum_{j=1}^r \mu_j^* g_j(x) \right\} = q(\mu^*)
$$

QUADRATIC PROGRAMMING DUALITY

• Consider the quadratic program

minimize $\frac{1}{2}x'Qx + c'x$ subject to $Ax \leq b$,

where Q is positive definite.

If f^* is finite, then $f^* = q^*$ and there exist both primal and dual optimal solutions, since the constraints are linear.

• Calculation of dual function:

$$
q(\mu) = \inf_{x \in \Re^n} \{ \frac{1}{2} x' Q x + c' x + \mu' (Ax - b) \}
$$

The infimum is attained for $x = -Q^{-1}(c + A'\mu)$, and, after substitution and calculation,

$$
q(\mu) = -\frac{1}{2}\mu' A Q^{-1} A' \mu - \mu'(b + A Q^{-1} c) - \frac{1}{2}c' Q^{-1} c
$$

• The dual problem, after a sign change, is minimize $\frac{1}{2}\mu'P\mu + t'\mu$ subject to $\mu \geq 0$,

where $P = AQ^{-1}A'$ and $t = b + AQ^{-1}c$.

MIT OpenCourseWare <http://ocw.mit.edu>

6.253 Convex Analysis and Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: <http://ocw.mit.edu/terms>.