LECTURE 10

LECTURE OUTLINE

- Min Common / Max Crossing duality theorems
- Strong duality conditions
- Existence of dual optimal solutions
- Nonlinear Farkas' lemma

Reading: Sections 4.3, 4.4, 5.1

DUALITY THEOREMS

Assume that $w^* < \infty$ and that the set

 $M = \big\{(u, w) \mid \text{there exists } w \text{ with } w \leq w \text{ and } (u, w) \in M \big\}$

is convex.

 $\{(u_k, w_k)\}\subset M$ with $u_k\to 0$, there holds • **Min Common/Max Crossing Theorem I:** We have $q^* = w^*$ if and only if for every sequence

$$
w^* \le \liminf_{k \to \infty} w_k.
$$

Corollary: If $M = \text{epi}(p)$ where p is closed proper convex and $p(0) < \infty$, then $q^* = w^*$.)

DUALITY THEOREMS (CONTINUED)

• **Min Common/Max Crossing Theorem II:** Assume in addition that $-\infty < w^*$ and that

$$
D = \{u \mid \text{there exists } w \in \mathbb{R} \text{ with } (u, w) \in M\}
$$

contains the origin in its relative interior. Then $q^* = w^*$ and there exists μ such that $q(\mu) = q^*$.

• Furthermore, the set $\{\mu \mid q(\mu) = q^*\}\$ is nonempty and compact if and only if D contains the origin in its interior.

• **Min Common/Max Crossing Theorem III:** Involves polyhedral assumptions, and will be developed later developed later.

PROOF OF THEOREM I

• Assume that $q^* = w^*$. Let $\{(u_k, w_k)\} \subset M$ be such that $u_k \to 0$. Then,

$$
q(\mu) = \inf_{(u,w)\in M} \{w + \mu'u\} \le w_k + \mu'u_k, \quad \forall k, \forall \mu \in \Re^n
$$

Taking the limit as $k \to \infty$, we obtain $q(\mu) \leq$ $\liminf_{k\to\infty} w_k$, for all $\mu \in \mathbb{R}^n$, implying that

$$
w^* = q^* = \sup_{\mu \in \mathbb{R}^n} q(\mu) \le \liminf_{k \to \infty} w_k
$$

 $\{(u_k, w_k)\}\subset M$ with $u_k\to 0$, there holds $w^*\leq$ Conversely, assume that for every sequence $\liminf_{k\to\infty} w_k$. If $w^* = -\infty$, then $q^* = -\infty$, by weak duality, so assume that $-\infty < w^*$. Steps:

• **Step 1:** $(0, w^* - \epsilon) \notin cl(M)$ for any $\epsilon > 0$.

PROOF OF THEOREM I (CONTINUED)

the entire halfline $\{(0, w^* - \epsilon) | \epsilon \ge 0\}$ belongs to • **Step 2:** ^M does not contain any vertical lines. If this were not so, $(0, -1)$ would be a direction of recession of $cl(M)$. Because $(0, w^*) \in cl(M)$, $\text{cl}(M)$, contradicting Step 1.

• **Step 3:** For any $\epsilon > 0$, since $(0, w^* - \epsilon) \notin cl(M)$,
there exists a nonvertical hyperplane strictly sepathere exists a nonvertical hyperplane strictly separating $(0, w^* - \epsilon)$ and M. This hyperplane crosses the $(n + 1)$ st axis at a vector $(0, \xi)$ with $w^* - \epsilon \le$ $\xi \leq w^*$, so $w^* - \epsilon \leq q^* \leq w^*$. Since ϵ can be arbitrarily small, it follows that $q^* = w^*$.

PROOF OF THEOREM II

• Note that $(0, w^*)$ is not a relative interior point of M. Therefore, by the Proper Separation Theorem, there is a hyperplane that passes through $(0, w^*)$, contains M in one of its closed halfspaces, but does not fully contain M, i.e., for some $(\mu,\beta) \neq$ $(0, 0)$

$$
\beta w^* \le \mu' u + \beta w, \qquad \forall (u, w) \in M,
$$

$$
\beta w^* < \sup_{(u, w) \in M} {\mu' u + \beta w}
$$

Will show that the hyperplane is nonvertical.

• Since for any $(u, w) \in M$, the set M contains the halfline $\{(u, w) \mid w \leq w\}$, it follows that $\beta \geq 0$. If $\beta = 0$, then $0 \le \mu' u$ for all $u \in D$. Since $0 \in \text{ri}(D)$ by assumption, we must have $\mu' u = 0$ for all $u \in D$ a contradiction. Therefore, $\beta > 0$, and we can assume that $\beta = 1$. It follows that

$$
w^* \le \inf_{(u,w)\in M} \{\mu'u + w\} = q(\mu) \le q^*
$$

Since the inequality $q^* \leq w^*$ holds always, we must have $q(\mu) = q^* = w^*$.

NONLINEAR FARKAS' LEMMA

Let $X \subset \mathbb{R}^n$, $f : X \mapsto \mathbb{R}$, and $g_j : X \mapsto \mathbb{R}$, $j = 1, \ldots, r$, be convex. Assume that

$$
f(x) \ge 0, \qquad \forall \ x \in X \text{ with } g(x) \le 0
$$

Let

$$
Q^* = \{ \mu \mid \mu \ge 0, \, f(x) + \mu' g(x) \ge 0, \, \forall \, x \in X \}.
$$

Then Q^* is nonempty and compact if and only if there exists a vector $x \in X$ such that $g_j(x) < 0$ for all $j = 1, \ldots, r$.

The lemma asserts the existence of a nonvertical hyperplane in \Re^{r+1} , with normal $(\mu, 1)$, that passes through the origin and contains the set

$$
\big\{\big(g(x),f(x)\big)\mid x\in X\big\}
$$

in its positive halfspace.

PROOF OF NONLINEAR FARKAS' LEMMA

• Apply MC/MC to

 $M = \{(u, w) \mid \text{there is } x \in X \text{ s. t. } g(x) \leq u, f(x) \leq w\}$

positive orthants translated to points $(g(x), f(x)),$ M is equal to M and is formed as the union of $x \in X$.

- The convexity of X, f , and g_j implies convexity of M.
- MC/MC Theorem II applies: we have

 $D = \{u \mid \text{there exists } w \in \Re \text{ with } (u, w) \in M\}$

and $0 \in \text{int}(D)$, because $((g(x), f(x)) \in M$.

MIT OpenCourseWare <http://ocw.mit.edu>

6.253 Convex Analysis and Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: <http://ocw.mit.edu/terms>.