LECTURE 10

LECTURE OUTLINE

- Min Common / Max Crossing duality theorems
- Strong duality conditions
- Existence of dual optimal solutions
- Nonlinear Farkas' lemma

Reading: Sections 4.3, 4.4, 5.1

All figures are courtesy of Athena Scientific, and are used with permission.

DUALITY THEOREMS

• Assume that $w^* < \infty$ and that the set

 $M = \left\{ (u, w) \mid \text{there exists } w \text{ with } w \le w \text{ and } (u, w) \in M \right\}$

is convex.

• Min Common/Max Crossing Theorem I: We have $q^* = w^*$ if and only if for every sequence $\{(u_k, w_k)\} \subset M$ with $u_k \to 0$, there holds

 $w^* \le \liminf_{k \to \infty} w_k.$

• Corollary: If M = epi(p) where p is closed proper convex and $p(0) < \infty$, then $q^* = w^*$.)

DUALITY THEOREMS (CONTINUED)

• Min Common/Max Crossing Theorem II: Assume in addition that $-\infty < w^*$ and that

$$D = \{ u \mid \text{there exists } w \in \Re \text{ with } (u, w) \in M \}$$

contains the origin in its relative interior. Then $q^* = w^*$ and there exists μ such that $q(\mu) = q^*$.

• Furthermore, the set $\{\mu \mid q(\mu) = q^*\}$ is nonempty and compact if and only if D contains the origin in its interior.

• Min Common/Max Crossing Theorem III: Involves polyhedral assumptions, and will be developed later.

PROOF OF THEOREM I

• Assume that $q^* = w^*$. Let $\{(u_k, w_k)\} \subset M$ be such that $u_k \to 0$. Then,

$$q(\mu) = \inf_{(u,w)\in M} \{w + \mu'u\} \le w_k + \mu'u_k, \quad \forall k, \forall \mu \in \Re^n$$

Taking the limit as $k \to \infty$, we obtain $q(\mu) \leq \liminf_{k\to\infty} w_k$, for all $\mu \in \Re^n$, implying that

$$w^* = q^* = \sup_{\mu \in \Re^n} q(\mu) \le \liminf_{k \to \infty} w_k$$

Conversely, assume that for every sequence $\{(u_k, w_k)\} \subset M$ with $u_k \to 0$, there holds $w^* \leq \lim \inf_{k\to\infty} w_k$. If $w^* = -\infty$, then $q^* = -\infty$, by weak duality, so assume that $-\infty < w^*$. Steps:

• Step 1: $(0, w^* - \epsilon) \notin cl(M)$ for any $\epsilon > 0$.

PROOF OF THEOREM I (CONTINUED)

• Step 2: M does not contain any vertical lines. If this were not so, (0, -1) would be a direction of recession of $\operatorname{cl}(M)$. Because $(0, w^*) \in \operatorname{cl}(M)$, the entire halfline $\{(0, w^* - \epsilon) | \epsilon \ge 0\}$ belongs to $\operatorname{cl}(M)$, contradicting Step 1.

• Step 3: For any $\epsilon > 0$, since $(0, w^* - \epsilon) \notin cl(M)$, there exists a nonvertical hyperplane strictly separating $(0, w^* - \epsilon)$ and M. This hyperplane crosses the (n + 1)st axis at a vector $(0, \xi)$ with $w^* - \epsilon \le$ $\xi \le w^*$, so $w^* - \epsilon \le q^* \le w^*$. Since ϵ can be arbitrarily small, it follows that $q^* = w^*$.

PROOF OF THEOREM II

• Note that $(0, w^*)$ is not a relative interior point of M. Therefore, by the Proper Separation Theorem, there is a hyperplane that passes through $(0, w^*)$, contains M in one of its closed halfspaces, but does not fully contain M, i.e., for some $(\mu, \beta) \neq$ (0, 0)

$$\beta w^* \le \mu' u + \beta w, \qquad \forall \ (u, w) \in M,$$
$$\beta w^* < \sup_{(u, w) \in M} \{ \mu' u + \beta w \}$$

Will show that the hyperplane is nonvertical.

• Since for any $(u, w) \in M$, the set M contains the halfline $\{(u, w) \mid w \leq w\}$, it follows that $\beta \geq 0$. If $\beta = 0$, then $0 \leq \mu' u$ for all $u \in D$. Since $0 \in \operatorname{ri}(D)$ by assumption, we must have $\mu' u = 0$ for all $u \in D$ a contradiction. Therefore, $\beta > 0$, and we can assume that $\beta = 1$. It follows that

$$w^* \le \inf_{(u,w)\in M} \{\mu'u + w\} = q(\mu) \le q^*$$

Since the inequality $q^* \leq w^*$ holds always, we must have $q(\mu) = q^* = w^*$.

NONLINEAR FARKAS' LEMMA

• Let $X \subset \Re^n$, $f : X \mapsto \Re$, and $g_j : X \mapsto \Re$, $j = 1, \ldots, r$, be convex. Assume that

 $f(x) \ge 0, \qquad \forall x \in X \text{ with } g(x) \le 0$

Let

$$Q^* = \{ \mu \mid \mu \ge 0, \ f(x) + \mu' g(x) \ge 0, \ \forall \ x \in X \}.$$

Then Q^* is nonempty and compact if and only if there exists a vector $x \in X$ such that $g_j(x) < 0$ for all j = 1, ..., r.

• The lemma asserts the existence of a nonvertical hyperplane in \Re^{r+1} , with normal $(\mu, 1)$, that passes through the origin and contains the set

$$\left\{ \left(g(x), f(x)\right) \mid x \in X \right\}$$

in its positive halfspace.

PROOF OF NONLINEAR FARKAS' LEMMA

• Apply MC/MC to

 $M = \left\{ (u, w) \mid \text{there is } x \in X \text{ s. t. } g(x) \le u, \ f(x) \le w \right\}$

• M is equal to M and is formed as the union of positive orthants translated to points (g(x), f(x)), $x \in X$.

- The convexity of X, f, and g_j implies convexity of M.
- MC/MC Theorem II applies: we have

 $D = \left\{ u \mid \text{there exists } w \in \Re \text{ with } (u, w) \in M \right\}$

and $0 \in int(D)$, because $((g(x), f(x))) \in M$.

MIT OpenCourseWare http://ocw.mit.edu

6.253 Convex Analysis and Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.