
LECTURE 9 

LECTURE OUTLINE 

• Min common/max crossing duality 

• Weak duality 

• Special Cases 

• Constrained optimization and minimax 

• Strong duality 

Reading: Sections 4.1,4.2, 3.4 

All figures are courtesy of Athena Scientific, and are used with permission.



EXTENDING DUALITY CONCEPTS 

• From dual descriptions of sets 

A union of points An intersection of halfspaces 

• To dual descriptions of functions (applying 
set duality to epigraphs) 

inf 
x∈�n

{f(x) − x�y} = −f�(y) 

• We now go to dual descriptions of problems, 
by applying conjugacy constructions to a simple 
generic geometric optimization problem 



MIN COMMON / MAX CROSSING PROBLEMS

• We introduce a pair of fundamental problems:

• Let M be a nonempty subset of �n+1

(a) Min Common Point Problem: Consider all
vectors that are common to M and the (n+
1)st axis. Find one whose (n + 1)st compo-
nent is minimum.

(b) Max Crossing Point Problem: Consider non-
vertical hyperplanes that contain M in their
“upper” closed halfspace. Find one whose
crossing point of the (n + 1)st axis is maxi-
mum.
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MATHEMATICAL FORMULATIONS


• Optimal value of the min common prob
lem: 

w∗ =  inf  w 
(0,w)∈M 

w∗ 

• Math formulation of the max crossing 
problem: Focus on hyperplanes with normals 
(µ, 1) whose crossing point ξ satisfies 

ξ ≤ w + µ�u, ∀ (u, w) ∈M 

Max crossing problem is to maximize ξ subject to 
ξ ≤ inf(u,w)∈M {w + µ�u}, µ ∈ �n, or 

maximize q(µ) �
(u,w

inf  
)∈M

{w + µ�u}=


subject to .
µ ∈ �n



GENERIC PROPERTIES – WEAK DUALITY


•	 Min common problem


inf w

(0,w)∈M 

•	 Max crossing problem


maximize q(µ) �
(u,w

inf  
)∈M

{w + µ�u}
= 

nsubject to µ ∈ � . 

= = 

w∗ 

• Note that q is concave and upper-semicontinuous 
(inf of linear functions). 

n • Weak Duality: For all µ ∈ �

q(µ) =  
(u,w

inf  
)∈M

{w + µ�u} ≤
(0,w

inf 
)∈M 

w = w∗, 

so maximizing over µ ∈ �n, we obtain q∗ ≤ w∗. 

• We say that strong duality holds if q∗ = w∗. 



CONNECTION TO CONJUGACY 

• An important special case: 

M = epi(p) 

where p : �n �→ [−∞, ∞]. Then w∗ = p(0), and 

q(µ) =  inf  inf  
(u,w)∈epi(p)

{w+µ�u} = 
{(u,w)|p(u)≤w}

{w+µ�u}, 

and finally 
q(µ) =  inf  

�
p(u) +  µ�u

� 
m u∈�

q(µ) = −p�(−µ)


• Thus, q(µ) =  −p�(−µ) and


q∗ = sup  q(µ) =  sup  
�
0 (−µ)−p�(−µ)

� 
= p��(0) ·


µ∈�n µ∈�n 



GENERAL OPTIMIZATION DUALITY 

• Consider minimizing a function f : �n �→ [−∞, ∞]. 

• Let F : �n+r �→ [−∞, ∞] be a function with 

f(x) =  F (x, 0), ∀ x ∈ �n 

•	 Consider the perturbation function 

p(u) =  inf  F (x, u) 
x∈�n 

and the MC/MC framework with M = epi(p) 

The min common value w∗ is• 

w∗ = p(0) = inf F (x, 0) = inf f(x) 
x∈�n x∈�n 

The dual function is • 

q(µ) =  inf  
�
p(u)+µ�u

� 
=  inf  

�
F (x, u)+µ�u

� 

u∈�r	 (x,u)∈�n+r 

so q(µ) =  −F �(0, −µ), where F � is the conjugate 
of F , viewed as a function of (x, u) 

Since • 

q∗ = sup  q(µ) =  − inf F �(0, −µ) =  − inf F �(0, µ), 
µ∈�r	 µ∈�r µ∈�r 

we have 

w∗ = inf  F (x, 0) ≥ −  inf F �(0, µ) =  q∗ 
x∈�n	 µ∈�r 



CONSTRAINED OPTIMIZATION


• Minimize f : �n �→ � over the set 

C = 
�
x ∈ X | g(x) ≤ 0

�
, 

where X ⊂ �n and g : �n �→ �r. 

•	 Introduce a “perturbed constraint set” 

Cu = 
�
x ∈ X | g(x) ≤ u

�
, u ∈ �r, 

and the function 
� 

f(x) if  x ∈ Cu,
F (x, u) =  ∞ otherwise, 

which satisfies F (x, 0) = f(x) for all x ∈ C. 

•	 Consider perturbation function 

p(u) =  inf  F (x, u) =  inf  f(x), 
x∈�n	 x∈X, g(x)≤u 

and the MC/MC framework with M = epi(p). 



CONSTR. OPT. - PRIMAL AND DUAL FNS


•	 Perturbation function (or primal function)


p(u) =  inf  F (x, u) =  inf  f(x),

x∈�n	 x∈X, g(x)≤u 

q∗ 

• Introduce L(x, µ) =  f(x) +  µ�g(x). Then 

q(µ) = inf 
�
p(u) +  µ�u

� 
r u∈�

= inf 
�
f(x) +  µ�u

� 
r u∈� , x∈X, g(x)≤u 

� 
infx∈X L(x, µ) if  µ ≥ 0,

= −∞	 otherwise. 



LINEAR PROGRAMMING DUALITY


•	 Consider the linear program 

minimize c�x 

subject to a�j x ≥ bj , j  = 1, . . . , r,  

where c ∈ �n, aj ∈ �n, and bj ∈ �, j = 1, . . . , r. 

•	 For µ ≥ 0, the dual function has the form 

q(µ) =  inf  L(x, µ) 
x∈�n 


 



c�x +


�
r

j=1 

µj (bj − a�j x)



 



= inf 


x∈�n 

�


� 
b�µ	 if 

�r
j=1 aj µj = c,= −∞	 otherwise 

•	 Thus the dual problem is 

maximize b�µ 
r

subject to
 aj µj = c, µ ≥ 0.

j=1




MINIMAX PROBLEMS


n	 mGiven φ : X × Z �→ �, where  X ⊂ � , Z ⊂ �
consider 

minimize sup φ(x, z) 
z∈Z 

subject to x ∈ X 

or 
maximize inf φ(x, z) 

x∈X 

subject to z ∈ Z. 

•	 Some important contexts: 
− Constrained optimization duality theory 

− Zero sum game theory 

•	 We always have 

sup inf φ(x, z) ≤ inf sup φ(x, z) 
z∈Z x∈X	 x∈X z∈Z 

•	 Key question: When does equality hold? 



CONSTRAINED OPTIMIZATION DUALITY


•	 For the problem


minimize f(x)

subject to x ∈ X, g(x) ≤ 0


introduce the Lagrangian function


L(x, µ) =  f(x) +  µ�g(x)


• Primal problem (equivalent to the original) 

min sup L(x, µ) =  
x∈X µ≥0 


 




f(x) if  g(x) ≤ 0,


∞ otherwise,


•	 Dual problem 

max inf L(x, µ) 
µ≥0 x∈X 

•	 Key duality question: Is it true that 

?
inf sup L(x, µ) =  w∗ q∗ = sup  inf L(x, µ) 

x∈�n 
µ≥0	 = µ≥0 x∈�n 



ZERO SUM GAMES


• Two players: 1st chooses i ∈ {1, . . . , n}, 2nd 
chooses j ∈ {1, . . . ,m}. 
• If i and j are selected, the 1st player gives aij 

to the 2nd. 

• Mixed strategies are allowed: The two players 
select probability distributions 

x = (x1, . . . , xn), z = (z1, . . . , zm) 

over their possible choices. 

• Probability of (i, j) is  xizj , so  the  expected  
amount to be paid by the 1st player 

x�Az = 
� 

aij xizj 

i,j 

where A is the n× m matrix with elements aij . 

• Each player optimizes his choice against the 
worst possible selection by the other player. So 

− 1st player minimizes maxz x�Az


− 2nd player maximizes minx x�Az




SADDLE POINTS


Definition: (x∗, z∗) is called a saddle point of φ 
if 

φ(x∗, z) ≤ φ(x∗, z∗) ≤ φ(x, z∗), ∀ x ∈ X, ∀ z ∈ Z 

Proposition: (x∗, z∗) is a saddle point if and only
if the minimax equality holds and 

x∗ ∈ arg min sup φ(x, z), z∗ ∈ arg max inf φ(x, z) (*)  
x∈X z∈Z z∈Z x∈X 

Proof: If (x∗, z∗) is a saddle point, then 

inf sup φ(x, z) ≤ sup φ(x∗, z) =  φ(x∗, z∗)

x∈X z∈Z z∈Z


= inf  φ(x, z∗) ≤ sup inf φ(x, z) 
x∈X z∈Z x∈X 

By the minimax inequality, the above holds as an 
equality throughout, so the minimax equality and 
Eq. (*) hold. 

Conversely, if Eq. (*) holds, then 

sup inf φ(x, z) =  inf  φ(x, z∗) ≤ φ(x∗, z∗)

z∈Z x∈X x∈X


≤ sup φ(x∗, z) =  inf  sup φ(x, z) 
z∈Z x∈X z∈Z 

Using the minimax equ., (x∗, z∗) is a saddle point.




•	 Introduce perturbation function p : �m �

MINIMAX MC/MC FRAMEWORK


→
[−∞, ∞] 

p(u) =  inf  sup 
�
φ(x, z) − u�z

�
, 

x∈X z∈Z	
u ∈ �m 

•	 Apply the MC/MC framework with M = epi(p) 

Introduce cl̂ f , the  concave closure of f• 

We have • 

sup φ(x, z) =  sup  (cl̂φ)(x, z), 
z∈Z	 z∈�m 

so 
w∗ = p(0) = inf sup (cl̂φ)(x, z). 

x∈X z∈�m 

The dual function can be shown to be • 

q(µ) =  inf  (cl̂ φ)(x, µ), 
x∈X

∀ µ ∈ �m 

so if φ(x, ) is concave and closed, ·

w∗ = inf  sup φ(x, z), q∗ = sup  inf φ(x, z) 
x∈X z∈�m	 z∈�m x∈X 



PROOF OF FORM OF DUAL FUNCTION 

•	 Write p(u) = infx∈X px(u), where


px(u) =  sup  
�
φ(x, z) − u�z

�
, x ∈ X,


z∈Z 

and note that 

�inf	
�
px(u)+u�µ

� 
= − sup 

�
u�(−µ)−px(u)

� 
= −px(−µ) 

u∈�m	
u∈�m 

Except for a sign change, px is the conjugate of

(−φ)(x, ) [assuming (−cl̂φ)(x, ) is proper], so
·	 ·

�px(−µ) =  −(cl̂φ)(x, µ).


Hence, for all µ ∈ �m,


q(µ) =  inf  
�
p(u) +  u�µ

�

m u∈�

= inf  inf 
�
px(u) +  u�µ

� 

u∈�m	 x∈X 

= inf  inf 
�
px(u) +  u�µ

� 

x∈X	u∈�m 

= inf  
� 
− p�

x(−µ)
� 

x∈X 

= inf 	(cl̂φ)(x, µ) 
x∈X 
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