LECTURE 8

LECTURE OUTLINE

- Convex conjugate functions
- Conjugacy theorem
- Examples
- Support functions

Reading: Section 1.6

CONJUGATE CONVEX FUNCTIONS

 $\bullet~$ Consider a function f and its epigraph

Nonvertical hyperplanes supporting $epi(f)$ \mapsto Crossing points of vertical axis

$$
f^{\star}(y) = \sup_{x \in \mathbb{R}^n} \{ x'y - f(x) \}, \qquad y \in \mathbb{R}^n.
$$

• For any $f : \mathbb{R}^n \mapsto [-\infty, \infty]$, its *conjugate convex function* is defined by

$$
f^{\star}(y) = \sup_{x \in \Re^n} \{ x'y - f(x) \}, \qquad y \in \Re^n
$$

EXAMPLES

$$
f^{\star}(y) = \sup_{x \in \mathbb{R}^n} \{ x'y - f(x) \}, \qquad y \in \mathbb{R}^n
$$

CONJUGATE OF CONJUGATE

• From the definition

$$
f^{\star}(y) = \sup_{x \in \mathbb{R}^n} \{ x'y - f(x) \}, \qquad y \in \mathbb{R}^n,
$$

note that f^* *is convex and closed.*

• Reason: $epi(f^*)$ is the intersection of the epigraphs of the linear functions of y

$$
x'y - f(x)
$$

as x ranges over \Re^n .

• Consider the conjugate of the conjugate:

$$
f^{\star\star}(x) = \sup_{y \in \mathbb{R}^n} \{ y'x - f^{\star}(y) \}, \qquad x \in \mathbb{R}^n.
$$

• $f^{\star\star}$ is convex and closed.

Important fact/Conjugacy theorem: If f is closed proper convex, then $f^{\star\star} = f$.

CONJUGACY THEOREM - VISUALIZATION

$$
f^{\star}(y) = \sup_{x \in \mathbb{R}^n} \{ x'y - f(x) \}, \qquad y \in \mathbb{R}^n
$$

$$
f^{\star\star}(x) = \sup_{y \in \Re^n} \{ y'x - f^{\star}(y) \}, \qquad x \in \Re^n
$$

• If f is closed convex proper, then $f^{\star\star} = f$.

CONJUGACY THEOREM

• Let $f : \mathbb{R}^n \mapsto (-\infty, \infty]$ be a function, let $\check{\text{cl}} f$ be its convex closure, let f^* be its convex conjugate, and consider the conjugate of f^* ,

$$
f^{\star\star}(x) = \sup_{y \in \Re^n} \{ y'x - f^{\star}(y) \}, \qquad x \in \Re^n
$$

(a) We have

$$
f(x) \ge f^{\star \star}(x), \qquad \forall \ x \in \Re^n
$$

- (b) If f is convex, then properness of any one of f, f^* , and f^{**} implies properness of the other two.
- (c) If f is closed proper and convex, then

$$
f(x) = f^{\star \star}(x), \qquad \forall \ x \in \Re^n
$$

(d) If cl $f(x) > -\infty$ for all $x \in \Re^n$, then

$$
\check{\mathrm{cl}}\,f(x) = f^{\star\star}(x), \qquad \forall \ x \in \Re^n
$$

PROOF OF CONJUGACY THEOREM (A), (C)

• (a) For all x, y , we have $f^*(y) \ge y'x - f(x)$, implying that $f(x) \ge \sup_y \{y'x - f^*(y)\} = f^{**}(x)$.

• (c) By contradiction. Assume there is $(x, \gamma) \in$ $epi(f^{**})$ with $(x, \gamma) \notin epi(f)$. There exists a nonvertical hyperplane with normal $(y, -1)$ that strictly separates (x, γ) and epi(f). (The vertical component of the normal vector is normalized to -1.)

to pass through $(x, f(x))$ and $(x, f^{**}(x))$. Their • Consider two parallel hyperplanes, translated vertical crossing points are $x'y - f(x)$ and $x'y - f(x)$ $f^{\star\star}(x)$, and lie strictly above and below the crossing point of the strictly sep. hyperplane. Hence

 $x'y - f(x) > x'y - f^{\star\star}(x)$ which contradicts part (a). **Q.E.D.**

A COUNTEREXAMPLE

• A counterexample (with closed convex but improper f) showing the need to assume properness in order for $f = f^{\star \star}$:

$$
f(x) = \begin{cases} \infty & \text{if } x > 0, \\ -\infty & \text{if } x \le 0. \end{cases}
$$

We have

$$
f^{\star}(y) = \infty, \qquad \forall \ y \in \Re^n,
$$

$$
f^{\star\star}(x) = -\infty, \qquad \forall \ x \in \Re^n.
$$

But

$$
\check{\mathrm{cl}}\,f=f,
$$

so $\check{cl} f \neq f^{\star\star}$.

A FEW EXAMPLES

• l_p and l_q norm conjugacy, where $\frac{1}{p} + \frac{1}{q} = 1$

$$
f(x) = \frac{1}{p} \sum_{i=1}^{n} |x_i|^p, \qquad f^*(y) = \frac{1}{q} \sum_{i=1}^{n} |y_i|^q
$$

• Conjugate of a strictly convex quadratic

$$
f(x) = \frac{1}{2}x'Qx + a'x + b,
$$

$$
f^*(y) = \frac{1}{2}(y - a)'Q^{-1}(y - a) - b.
$$

• Conjugate of a function obtained by invertible linear transformation/translation of a function
$$
p
$$

$$
f(x) = p(A(x - c)) + a'x + b,
$$

$$
f^*(y) = q((A')^{-1}(y - a)) + c'y + d,
$$

where q is the conjugate of p and $d = -(c'a + b)$.

SUPPORT FUNCTIONS

Conjugate of indicator function δ_X of set X

$$
\sigma_X(y) = \sup_{x \in X} y'x
$$

is called the *support function of* X.

To determine $\sigma_X(y)$ for a given vector y, we project the set X on the line determined by y , we find \hat{x} , the extreme point of projection in the direction y , and we scale by setting

$$
\sigma_X(y) = \|\hat{x}\| \cdot \|y\|
$$

 \bullet epi (σ_X) is a closed convex cone.

• The sets X , $cl(X)$, $conv(X)$, and $cl(conv(X))$ all have the same support function (by the conjugacy theorem).

SUPPORT FN OF A CONE - POLAR CONE

- The conjugate of the indicator function δ_C is the support function, $\sigma_C(y)=\sup_{x\in C} y'x$.
- If C is a cone,

$$
\sigma_C(y) = \begin{cases} 0 & \text{if } y'x \le 0, \forall x \in C, \\ \infty & \text{otherwise} \end{cases}
$$

i.e., σ_C is the indicator function δ_{C^*} of the cone

$$
C^* = \{ y \mid y'x \le 0, \forall x \in C \}
$$

This is called the *polar cone of* C.

- By the Conjugacy Theorem the polar cone of C[∗] is $cl(conv(C))$. This is the *Polar Cone Theorem*.
- Special case: If $C = \text{cone}(\{a_1, \ldots, a_r\})$, then

$$
C^* = \{x \mid a'_j x \le 0, \, j = 1, \dots, r\}
$$

Farkas' Lemma: $(C^*)^* = C$.

• True because C is a closed set $[cone({a_1, ..., a_r})$ is the image of the positive orthant $\{\alpha \mid \alpha \geq 0\}$ $\sum_{j=1}^{r} \alpha_j a_j$, and the image of any polyhedral set under the linear transformation that maps α to under a linear transformation is a closed set.

MIT OpenCourseWare <http://ocw.mit.edu>

6.253 Convex Analysis and Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: <http://ocw.mit.edu/terms>.