LECTURE 8

LECTURE OUTLINE

- Convex conjugate functions
- Conjugacy theorem
- Examples
- Support functions

Reading: Section 1.6

CONJUGATE CONVEX FUNCTIONS

• Consider a function f and its epigraph

Nonvertical hyperplanes supporting epi(f) \mapsto Crossing points of vertical axis

$$f^{\star}(y) = \sup_{x \in \Re^n} \{ x'y - f(x) \}, \qquad y \in \Re^n$$

• For any $f: \Re^n \mapsto [-\infty, \infty]$, its conjugate convex function is defined by

$$f^{\star}(y) = \sup_{x \in \Re^n} \left\{ x'y - f(x) \right\}, \qquad y \in \Re^n$$

EXAMPLES

$$f^{\star}(y) = \sup_{x \in \Re^n} \left\{ x'y - f(x) \right\}, \qquad y \in \Re^n$$

CONJUGATE OF CONJUGATE

• From the definition

$$f^{\star}(y) = \sup_{x \in \Re^n} \{ x'y - f(x) \}, \qquad y \in \Re^n,$$

note that f^* is convex and closed.

• Reason: $epi(f^*)$ is the intersection of the epigraphs of the linear functions of y

$$x'y - f(x)$$

as x ranges over \Re^n .

• Consider the conjugate of the conjugate:

$$f^{\star\star}(x) = \sup_{y \in \Re^n} \{ y'x - f^{\star}(y) \}, \qquad x \in \Re^n.$$

- $f^{\star\star}$ is convex and closed.
- Important fact/Conjugacy theorem: If f is closed proper convex, then $f^{\star\star} = f$.

CONJUGACY THEOREM - VISUALIZATION

$$f^{\star}(y) = \sup_{x \in \Re^n} \{ x'y - f(x) \}, \qquad y \in \Re^n$$

$$f^{\star\star}(x) = \sup_{y \in \Re^n} \left\{ y'x - f^{\star}(y) \right\}, \qquad x \in \Re^n$$

• If f is closed convex proper, then $f^{\star\star} = f$.

CONJUGACY THEOREM

• Let $f: \Re^n \mapsto (-\infty, \infty]$ be a function, let $\check{\mathrm{cl}} f$ be its convex closure, let f^* be its convex conjugate, and consider the conjugate of f^* ,

$$f^{\star\star}(x) = \sup_{y \in \Re^n} \{ y'x - f^{\star}(y) \}, \qquad x \in \Re^n$$

(a) We have

$$f(x) \ge f^{\star\star}(x), \qquad \forall \ x \in \Re^n$$

- (b) If f is convex, then properness of any one of f, f^* , and f^{**} implies properness of the other two.
- (c) If f is closed proper and convex, then

$$f(x) = f^{\star \star}(x), \qquad \forall \ x \in \Re^n$$

(d) If $\operatorname{cl} f(x) > -\infty$ for all $x \in \Re^n$, then

$$\operatorname{cl} f(x) = f^{\star\star}(x), \qquad \forall \ x \in \Re^n$$

PROOF OF CONJUGACY THEOREM (A), (C)

• (a) For all x, y, we have $f^{\star}(y) \ge y'x - f(x)$, implying that $f(x) \ge \sup_{y} \{y'x - f^{\star}(y)\} = f^{\star \star}(x)$.

• (c) By contradiction. Assume there is $(x,\gamma) \in epi(f^{**})$ with $(x,\gamma) \notin epi(f)$. There exists a nonvertical hyperplane with normal (y, -1) that strictly separates (x,γ) and epi(f). (The vertical component of the normal vector is normalized to -1.)

• Consider two parallel hyperplanes, translated to pass through (x, f(x)) and $(x, f^{**}(x))$. Their vertical crossing points are x'y - f(x) and $x'y - f^{**}(x)$, and lie strictly above and below the crossing point of the strictly sep. hyperplane. Hence

 $x'y - f(x) > x'y - f^{\star\star}(x)$ which contradicts part (a). **Q.E.D.**

A COUNTEREXAMPLE

• A counterexample (with closed convex but improper f) showing the need to assume properness in order for $f = f^{\star\star}$:

$$f(x) = \begin{cases} \infty & \text{if } x > 0, \\ -\infty & \text{if } x \le 0. \end{cases}$$

We have

$$f^{\star}(y) = \infty, \qquad \forall \ y \in \Re^n,$$

$$f^{\star\star}(x) = -\infty, \qquad \forall \ x \in \Re^n.$$

But

$$\operatorname{cl} f = f,$$

so $\operatorname{cl} f \neq f^{\star\star}$.

A FEW EXAMPLES

• l_p and l_q norm conjugacy, where $\frac{1}{p} + \frac{1}{q} = 1$

$$f(x) = \frac{1}{p} \sum_{i=1}^{n} |x_i|^p, \qquad f^{\star}(y) = \frac{1}{q} \sum_{i=1}^{n} |y_i|^q$$

• Conjugate of a strictly convex quadratic

$$f(x) = \frac{1}{2}x'Qx + a'x + b,$$
$$f^{\star}(y) = \frac{1}{2}(y - a)'Q^{-1}(y - a) - b$$

$$\int (g) - 2^{(g-\alpha)} = 2^{(g-\alpha)} = 0.$$

• Conjugate of a function obtained by invertible linear transformation/translation of a function p

$$f(x) = p(A(x-c)) + a'x + b,$$

$$f^{\star}(y) = q((A')^{-1}(y-a)) + c'y + d,$$

where q is the conjugate of p and d = -(c'a + b).

SUPPORT FUNCTIONS

• Conjugate of indicator function δ_X of set X

$$\sigma_X(y) = \sup_{x \in X} y'x$$

is called the support function of X.

• To determine $\sigma_X(y)$ for a given vector y, we project the set X on the line determined by y, we find \hat{x} , the extreme point of projection in the direction y, and we scale by setting

$$\sigma_X(y) = \|\hat{x}\| \cdot \|y\|$$

• $epi(\sigma_X)$ is a closed convex cone.

• The sets X, cl(X), conv(X), and cl(conv(X))all have the same support function (by the conjugacy theorem).

SUPPORT FN OF A CONE - POLAR CONE

- The conjugate of the indicator function δ_C is the support function, $\sigma_C(y) = \sup_{x \in C} y'x$.
- If C is a cone,

$$\sigma_C(y) = \begin{cases} 0 & \text{if } y'x \le 0, \ \forall \ x \in C, \\ \infty & \text{otherwise} \end{cases}$$

i.e., σ_C is the indicator function δ_{C^*} of the cone

$$C^* = \{ y \mid y'x \le 0, \ \forall \ x \in C \}$$

This is called the *polar cone* of C.

- By the Conjugacy Theorem the polar cone of C^* is cl(conv(C)). This is the *Polar Cone Theorem*.
- Special case: If $C = \operatorname{cone}(\{a_1, \ldots, a_r\})$, then

$$C^* = \{ x \mid a'_j x \le 0, \, j = 1, \dots, r \}$$

• Farkas' Lemma: $(C^*)^* = C$.

• True because C is a closed set $[\operatorname{cone}(\{a_1, \ldots, a_r\}))$ is the image of the positive orthant $\{\alpha \mid \alpha \geq 0\}$ under the linear transformation that maps α to $\sum_{j=1}^{r} \alpha_j a_j]$, and the image of any polyhedral set under a linear transformation is a closed set. MIT OpenCourseWare http://ocw.mit.edu

6.253 Convex Analysis and Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.