LECTURE 7

LECTURE OUTLINE

- Partial Minimization
- Hyperplane separation
- Proper separation
- Nonvertical hyperplanes

Reading: Sections 3.3, 1.5

PARTIAL MINIMIZATION

• Let $F : \Re^{n+m} \mapsto (-\infty, \infty]$ be a closed proper convex function, and consider

$$
f(x) = \inf_{z \in \mathbb{R}^m} F(x, z)
$$

- **1st fact:** If F is convex, then f is also convex.
- 2nd fact:

$$
P(\text{epi}(F)) \subset \text{epi}(f) \subset \text{cl}\Big(P(\text{epi}(F))\Big),
$$

where $P(\cdot)$ denotes projection on the space of (x, w) , i.e., for any subset S of \Re^{n+m+1} , $P(S) = \{(x, w) \mid$ $(x, z, w) \in S$.

• Thus, if F is closed and there is structure guaranteeing that the projection preserves closedness, then f is closed.

 \bullet ... but convexity and closedness of F does not guarantee closedness of f .

PARTIAL MINIMIZATION: VISUALIZATION

• Connection of preservation of closedness under partial minimization and attainment of infimum over z for fixed x .

• Counterexample: Let

$$
F(x, z) = \begin{cases} e^{-\sqrt{xz}} & \text{if } x \ge 0, \ z \ge 0, \\ \infty & \text{otherwise.} \end{cases}
$$

• F convex and closed, but

$$
f(x) = \inf_{z \in \mathbb{R}} F(x, z) = \begin{cases} 0 & \text{if } x > 0, \\ 1 & \text{if } x = 0, \\ \infty & \text{if } x < 0, \end{cases}
$$

is not closed.

PARTIAL MINIMIZATION THEOREM

• Let $F : \Re^{n+m} \mapsto (-\infty, \infty]$ be a closed proper convex function, and consider $f(x)=\inf_{z\in\mathbb{R}^m} F(x,z)$.

• Every set intersection theorem yields a closedness result. The simplest case is the following:

• Preservation of Closedness Under Compactness: If there exist $\overline{x} \in \Re^n, \overline{\gamma} \in \Re$ such that the set

$$
\left\{z\mid F(\overline{x},z)\leq\overline{\gamma}\right\}
$$

is nonempty and compact, then f is convex, closed, and proper. Also, for each $x \in \text{dom}(f)$, the set of minima of $F(x, \cdot)$ is nonempty and compact.

HYPERPLANES

• A *hyperplane* is a set of the form $\{x \mid a'x = b\},\$ where a is nonzero vector in \mathbb{R}^n and b is a scalar.

• We say that two sets C_1 and C_2 are *separated by a hyperplane* $H = \{x \mid a'x = b\}$ if each lies in a different closed halfspace associated with H , i.e.,

either
$$
a'x_1 \le b \le a'x_2
$$
, $\forall x_1 \in C_1, \forall x_2 \in C_2$,
or $a'x_2 \le b \le a'x_1$, $\forall x_1 \in C_1, \forall x_2 \in C_2$

If x belongs to the closure of a set C , a hyperplane that separates C and the singleton set $\{x\}$ is said be *supporting* C *at* x.

VISUALIZATION

Separating and supporting hyperplanes:

• A separating $\{x \mid a'x = b\}$ that is disjoint from C_1 and C_2 is called *strictly* separating:

SUPPORTING HYPERPLANE THEOREM

• Let C be convex and let x be a vector that is not an interior point of C . Then, there exists a hyperplane that passes through x and contains C in one of its closed halfspaces.

Proof: Take a sequence $\{x_k\}$ that does not belong to $cl(C)$ and converges to x. Let \hat{x}_k be the projection of x_k on cl(C). We have for all $x \in$ $\operatorname{cl}(C)$

 $a'_k x \geq a'_k$ $\forall x \in \text{cl}(C), \ \forall k = 0, 1, \ldots,$

where $a_k = (\hat{x}_k - x_k)/\|\hat{x}_k - x_k\|$. Let a be a limit point of $\{a_k\}$, and take limit as $k \to \infty$. Q.E.D.

SEPARATING HYPERPLANE THEOREM

• Let C_1 and C_2 be two nonempty convex subsets of \mathbb{R}^n . If C_1 and C_2 are disjoint, there exists a hyperplane that separates them, i.e., there exists a vector $a \neq 0$ such that

 $a' x_1 \le a' x_2, \quad \forall x_1 \in C_1, \forall x_2 \in C_2.$

Proof: Consider the convex set

$$
C_1 - C_2 = \{x_2 - x_1 \mid x_1 \in C_1, x_2 \in C_2\}
$$

Since C_1 and C_2 are disjoint, the origin does not belong to $C_1 - C_2$, so by the Supporting Hyperplane Theorem, there exists a vector $a \neq 0$ such that

$$
0 \le a'x, \qquad \forall \ x \in C_1 - C_2,
$$

which is equivalent to the desired relation. $Q.E.D.$

STRICT SEPARATION THEOREM

• Strict Separation Theorem: Let C_1 and C_2 be two disjoint nonempty convex sets. If C_1 is closed, and C_2 is compact, there exists a hyperplane that strictly separates them.

Proof: (Outline) Consider the set C_1-C_2 . Since C_1 is closed and C_2 is compact, $C_1 - C_2$ is closed. Since $C_1 \cap C_2 = \emptyset$, 0 ∉ $C_1 - C_2$. Let $x_1 - x_2$ be the projection of 0 onto $C_1 - C_2$. The strictly separating hyperplane is constructed as in (b).

Note: Any conditions that guarantee closedness of $C_1 - C_2$ guarantee existence of a strictly separating hyperplane. However, there may exist a strictly separating hyperplane without $C_1 - C_2$ being closed.

ADDITIONAL THEOREMS

• Fundamental Characterization: The closure of the convex hull of a set $C \subset \mathbb{R}^n$ is the intersection of the closed halfspaces that contain C. (Proof uses the strict separation theorem.)

• We say that a hyperplane *properly separates* C¹ and C_2 if it separates C_1 and C_2 and does not fully contain both C_1 and C_2 .

Proper Separation Theorem: Let C_1 and C_2 be two nonempty convex subsets of \mathbb{R}^n . There exists a hyperplane that properly separates C_1 and C_2 if and only if

$$
\mathrm{ri}(C_1) \cap \mathrm{ri}(C_2) = \emptyset
$$

PROPER POLYHEDRAL SEPARATION

Recall that two convex sets C and P such that

 $ri(C) \cap ri(P) = \emptyset$

can be properly separated, i.e., by a hyperplane that does not contain both C and P.

• If P is polyhedral and the slightly stronger condition

$$
\mathrm{ri}(C) \cap P = \emptyset
$$

holds, then the properly separating hyperplane can be chosen so that it does not contain the nonpolyhedral set C while it may contain P.

On the left, the separating hyperplane can be chosen so that it does not contain C . On the right where P is not polyhedral, this is not possible.

NONVERTICAL HYPERPLANES

A hyperplane in \mathbb{R}^{n+1} with normal (μ,β) is nonvertical if $\beta \neq 0$.

• It intersects the $(n+1)$ st axis at $\xi = (\mu/\beta)'u+w$, where (u, w) is any vector on the hyperplane.

• A nonvertical hyperplane that contains the epigraph of a function in its "upper" halfspace, provides lower bounds to the function values.

• The epigraph of a proper convex function does not contain a vertical line, so it appears plausible that it is contained in the "upper" halfspace of some nonvertical hyperplane.

NONVERTICAL HYPERPLANE THEOREM

Let C be a nonempty convex subset of \mathbb{R}^{n+1} that contains no vertical lines. Then:

- (a) C is contained in a closed halfspace of a nonvertical hyperplane, i.e., there exist $\mu \in \mathbb{R}^n$, $\beta \in \Re$ with $\beta \neq 0$, and $\gamma \in \Re$ such that $\mu' u + \beta w \ge \gamma$ for all $(u, w) \in C$.
- (b) If $(u, w) \notin cl(C)$, there exists a nonvertical hyperplane strictly separating (u, w) and C .

Proof: Note that $cl(C)$ contains no vert. line [since C contains no vert. line, ri (C) contains no vert. line, and $ri(C)$ and $cl(C)$ have the same recession cone]. So we just consider the case: C closed.

(a) C is the intersection of the closed halfspaces containing C. If all these corresponded to vertical hyperplanes, C would contain a vertical line.

(b) There is a hyperplane strictly separating (u, w) and C. If it is nonvertical, we are done, so assume it is vertical. "Add" to this vertical hyperplane a small ϵ -multiple of a nonvertical hyperplane containing C in one of its halfspaces as per (a) .

MIT OpenCourseWare <http://ocw.mit.edu>

6.253 Convex Analysis and Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: <http://ocw.mit.edu/terms>.