
LECTURE 7


LECTURE OUTLINE


Partial Minimization • 

• Hyperplane separation 

• Proper separation 

• Nonvertical hyperplanes 

Reading: Sections 3.3, 1.5 

All figures are courtesy of Athena Scientific, and are used with permission.



PARTIAL MINIMIZATION


• Let F : �n+m �→ (−∞, ∞] be a closed proper 
convex function, and consider 

f(x) =  inf  F (x, z)

z∈�m 

•	 1st fact: If F is convex, then f is also convex. 

2nd fact: • 
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where P ( ) denotes projection on the space of (x,w),
·
i.e., for any subset S of �n+m+1, P (S) =  

�
(x,w) |

(x, z, w) ∈ S
�
. 

• Thus, if F is closed and there is structure guar
anteeing that the projection preserves closedness, 
then f is closed. 

• ... but convexity and closedness of F does not 
guarantee closedness of f . 



PARTIAL MINIMIZATION: VISUALIZATION


• Connection of preservation of closedness under 
partial minimization and attainment of infimum 
over z for fixed x. 
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•	 Counterexample: Let 
� 

e−
√

xz if x ≥ 0, z ≥ 0,F (x, z) =  
∞ otherwise. 

• F convex and closed, but 

� 0  if  x > 0,

f(x) =  inf  F (x, z) = 1  if  x = 0,


z∈� ∞ if x < 0,


is not closed. 



PARTIAL MINIMIZATION THEOREM 

• Let F : �n+m �→ (−∞, ∞] be a closed proper 
convex function, and consider f(x) = infz∈�m F (x, z). 

• Every set intersection theorem yields a closed-
ness result. The simplest case is the following: 

Preservation of Closedness Under Com• 
pactness: If there exist x ∈ �n, γ ∈ �  such that 
the set 

�
z | F (x, z) ≤ γ

� 

is nonempty and compact, then f is convex, closed, 
and proper. Also, for each x ∈ dom(f), the set of 
minima of F (x, ) is nonempty and compact. ·
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HYPERPLANES


x 

Negative Halfspace 

Positive Halfspace 
{x | a�x ≥ b} 

{x | a�x ≤ b} 

Hyperplane 
{x | a�x = b} = {x | a�x = a�x} 

a 

• A hyperplane is a set of the form {x | a�x = b}, 
where a is nonzero vector in �n and b is a scalar. 

• We say that two sets C1 and C2 are separated 
by a hyperplane H = {x | a�x = b} if each lies in a 
different closed halfspace associated with H, i.e.,  

either a�x1 ≤ b ≤ a�x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2, 

or a�x2 ≤ b ≤ a�x1, ∀ x1 ∈ C1, ∀ x2 ∈ C2 

• If x belongs to the closure of a set C, a  hyper
plane that separates C and the singleton set {x}
is said be supporting C at x. 



VISUALIZATION 

• Separating and supporting hyperplanes:


a 

(a) 

C1 C2 

x 

a 

(b) 

C 

• A separating {x | a�x = b} that is disjoint from 
C1 and C2 is called strictly separating: 

a�x1 < b < a�x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2 
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SUPPORTING HYPERPLANE THEOREM


Let C be convex and let x be a vector that is • 
not an interior point of C. Then,  there  exists  a 

hyperplane that passes through x and contains C

in one of its closed halfspaces. 
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Proof: Take a sequence {xk} that does not be
long to cl(C) and converges to x. Let x̂k be the 
projection of xk on cl(C). We have for all x ∈
cl(C) 

a�kx ≥ ak
� xk, ∀ x ∈ cl(C), ∀ k = 0, 1, . . . ,  

where ak = (x̂k − xk)/�x̂k − xk�. Let a be a limit 
point of {ak}, and take limit as k →∞. Q.E.D. 



SEPARATING HYPERPLANE THEOREM


• Let C1 and C2 be two nonempty convex subsets 
of �n. If  C1 and C2 are disjoint, there exists a 
hyperplane that separates them, i.e., there exists 
a vector a = 0 such that �

a�x1 ≤ a�x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2. 

Proof: Consider the convex set 

C1 − C2 = {x2 − x1 | x1 ∈ C1, x2 ∈ C2} 

Since C1 and C2 are disjoint, the origin does not 
belong to C1 − C2, so by the Supporting Hyper
plane Theorem, there exists a vector a = 0  such  �
that 

0 ≤ a�x, ∀ x ∈ C1 − C2, 

which is equivalent to the desired relation. Q.E.D.




STRICT SEPARATION THEOREM


• Strict Separation Theorem: Let C1 and C2 

be two disjoint nonempty convex sets. If C1 is 
closed, and C2 is compact, there exists a hyper
plane that strictly separates them. 
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Proof: (Outline) Consider the set C1 −C2. Since  
C1 is closed and C2 is compact, C1 − C2 is closed. 
Since C1 ∩ C2 = Ø, 0  ∈/ C1 − C2. Let x1 − x2 

be the projection of 0 onto C1 − C2. The  strictly  
separating hyperplane is constructed as in (b). 

• Note: Any conditions that guarantee closed-
ness of C1 − C2 guarantee existence of a strictly 
separating hyperplane. However, there may exist 
a strictly separating hyperplane without C1 − C2 

being closed. 



ADDITIONAL THEOREMS


Fundamental Characterization: The clo• 
sure of the convex hull of a set C is the
⊂ �n 

intersection of the closed halfspaces that contain

C. (Proof uses the strict separation theorem.) 

• We say that a hyperplane properly separates C1 

and C2 if it separates C1 and C2 and does not fully 
contain both C1 and C2. 
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• Proper Separation Theorem: Let C1 and 
C2 be two nonempty convex subsets of �n. There  
exists a hyperplane that properly separates C1 and 
C2 if and only if 

ri(C1) ∩ ri(C2) =  Ø 



PROPER POLYHEDRAL SEPARATION


Recall that two convex sets C and P such that • 

ri(C) ∩ ri(P ) =  Ø


can be properly separated, i.e., by a hyperplane 
that does not contain both C and P . 

• If P is polyhedral and the slightly stronger con

dition 

ri(C) ∩ P = Ø 

holds, then the properly separating hyperplane 
can be chosen so that it does not contain the non-
polyhedral set C while it may contain P . 
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On the left, the separating hyperplane can be cho
sen so that it does not contain C. On the right 
where P is not polyhedral, this is not possible. 



NONVERTICAL HYPERPLANES


• A hyperplane in �n+1 with normal (µ,β ) is  
nonvertical if β = 0. �
• It intersects the (n+1)st axis at ξ = (µ/β)�u+w, 
where (u,w) is any vector on the hyperplane. 
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• A nonvertical hyperplane that contains the epi
graph of a function in its “upper” halfspace, pro
vides lower bounds to the function values. 

• The epigraph of a proper convex function does 
not contain a vertical line, so it appears plausible 
that it is contained in the “upper” halfspace of 
some nonvertical hyperplane. 



NONVERTICAL HYPERPLANE THEOREM


• Let C be a nonempty convex subset of �n+1 

that contains no vertical lines. Then: 

(a) C is contained in a closed halfspace of a non-

nvertical hyperplane, i.e., there exist µ ∈ � , 

β ∈ � with β =� 0, and γ ∈ � such that 
µ�u + βw ≥ γ for all (u, w) ∈ C. 

(b) If (u,w) ∈/ cl(C), there exists a nonvertical 
hyperplane strictly separating (u, w) and C. 

Proof: Note that cl(C) contains no vert. line [since 
C contains no vert. line, ri(C) contains no vert. 
line, and ri(C) and cl(C) have the same recession 
cone]. So we just consider the case: C closed. 

(a) C is the intersection of the closed halfspaces 
containing C. If all these corresponded to vertical 
hyperplanes, C would contain a vertical line. 

(b) There is a hyperplane strictly separating (u,w) 
and C. If it is nonvertical, we are done, so assume 
it is vertical. “Add” to this vertical hyperplane a 
small �-multiple of a nonvertical hyperplane con
taining C in one of its halfspaces as per (a). 
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