LECTURE 6

LECTURE OUTLINE

- Nonemptiness of closed set intersections
- Existence of optimal solutions
- Linear and quadratic programming
- Preservation of closure under linear transformation

ROLE OF CLOSED SET INTERSECTIONS I

• A fundamental question: Given a sequence of nonempty closed sets $\{C_k\}$ in \Re^n with $C_{k+1} \subset C_k$ for all k, when is $\bigcap_{k=0}^{\infty} C_k$ nonempty?

• Set intersection theorems are significant in at least three major contexts, which we will discuss in what follows:

1. Does a function $f : \Re^n \mapsto (-\infty, \infty]$ attain a minimum over a set X? This is true if and only if

Intersection of nonempty $\{x \in X \mid f(x) \le \gamma_k\}$

is nonempty.

ROLE OF CLOSED SET INTERSECTIONS II

2. If C is closed and A is a matrix, is AC closed? Special case:

- If C_1 and C_2 are closed, is $C_1 + C_2$ closed?

3. If F(x,z) is closed, is $f(x) = \inf_z F(x,z)$ closed? (Critical question in duality theory.) Can be addressed by using the relation

$$P(\operatorname{epi}(F)) \subset \operatorname{epi}(f) \subset \operatorname{cl}(P(\operatorname{epi}(F)))$$

where $P(\cdot)$ is projection on the space of (x, w).

ASYMPTOTIC SEQUENCES

• Given nested sequence $\{C_k\}$ of closed convex sets, $\{x_k\}$ is an *asymptotic sequence* if

 $x_k \in C_k, \qquad x_k \neq 0, \qquad k = 0, 1, \dots$ $\|x_k\| \to \infty, \qquad \frac{x_k}{\|x_k\|} \to \frac{d}{\|d\|}$

where d is a nonzero common direction of recession of the sets C_k .

- As a special case we define asymptotic sequence of a closed convex set C (use $C_k \equiv C$).
- Every unbounded $\{x_k\}$ with $x_k \in C_k$ has an asymptotic subsequence.
- $\{x_k\}$ is called *retractive* if for some k, we have

$$x_k - d \in C_k, \quad \forall \ k \ge k.$$

RETRACTIVE SEQUENCES

• A nested sequence $\{C_k\}$ of closed convex sets is *retractive* if all its asymptotic sequences are retractive.

• A closed halfspace (viewed as a sequence with identical components) is retractive.

• Intersections and Cartesian products of retractive set sequences are retractive.

• A polyhedral set is retractive. Also the vector sum of a convex compact set and a retractive convex set is retractive.

• Nonpolyhedral cones and level sets of quadratic functions need not be retractive.

SET INTERSECTION THEOREM I

Proposition: If $\{C_k\}$ is retractive, then $\bigcap_{k=0}^{\infty} C_k$ is nonempty.

- Key proof ideas:
 - (a) The intersection $\bigcap_{k=0}^{\infty} C_k$ is empty iff the sequence $\{x_k\}$ of minimum norm vectors of C_k is unbounded (so a subsequence is asymptotic).
 - (b) An asymptotic sequence $\{x_k\}$ of minimum norm vectors cannot be retractive, because such a sequence eventually gets closer to 0 when shifted opposite to the asymptotic direction.

SET INTERSECTION THEOREM II

Proposition: Let $\{C_k\}$ be a nested sequence of nonempty closed convex sets, and X be a retractive set such that all the sets $C_k = X \cap C_k$ are nonempty. Assume that

$$R_X \cap R \subset L,$$

where

$$R = \bigcap_{k=0}^{\infty} R_{C_k}, \qquad L = \bigcap_{k=0}^{\infty} L_{C_k}$$

Then $\{C_k\}$ is retractive and $\bigcap_{k=0}^{\infty} C_k$ is nonempty.

- Special cases:
 - $X = \Re^n, R = L$ ("cylindrical" sets C_k)
 - $R_X \cap R = \{0\} \text{ (no nonzero common recession} \\ \text{direction of } X \text{ and } \cap_k C_k \text{)}$

Proof: The set of common directions of recession of C_k is $R_X \cap R$. For any asymptotic sequence $\{x_k\}$ corresponding to $d \in R_X \cap R$:

(1) $x_k - d \in C_k$ (because $d \in L$)

(2) $x_k - d \in X$ (because X is retractive) So $\{C_k\}$ is retractive.

NEED TO ASSUME THAT X IS RETRACTIVE

Consider $\cap_{k=0}^{\infty} C_k$, with $C_k = X \cap C_k$

- The condition $R_X \cap R \subset L$ holds
- In the figure on the left, X is polyhedral.

• In the figure on the right, X is nonpolyhedral and nonretrative, and

$$\bigcap_{k=0}^{\infty} C_k = \emptyset$$

LINEAR AND QUADRATIC PROGRAMMING

• Theorem: Let

 $f(x) = x'Qx + c'x, \quad X = \{x \mid a'_j x + b_j \le 0, \ j = 1, \dots, r\}$

where Q is symmetric positive semidefinite. If the minimal value of f over X is finite, there exists a minimum of f over X.

Proof: (Outline) Write

Set of Minima = $\bigcap_{k=0}^{\infty} (X \cap \{x \mid x'Qx + c'x \leq \gamma_k\})$

with

$$\gamma_k \downarrow f^* = \inf_{x \in X} f(x).$$

Verify the condition $R_X \cap R \subset L$ of the preceding set intersection theorem, where R and L are the sets of common recession and lineality directions of the sets

$$\{x \mid x'Qx + c'x \le \gamma_k\}$$

Q.E.D.

CLOSURE UNDER LINEAR TRANSFORMATION

- Let C be a nonempty closed convex, and let A be a matrix with nullspace N(A).
 - (a) AC is closed if $R_C \cap N(A) \subset L_C$.
 - (b) $A(X \cap C)$ is closed if X is a retractive set and

$$R_X \cap R_C \cap N(A) \subset L_C,$$

Proof: (Outline) Let $\{y_k\} \subset AC$ with $y_k \to y$. We prove $\bigcap_{k=0}^{\infty} C_k \neq \emptyset$, where $C_k = C \cap N_k$, and

 $N_k = \{x \mid Ax \in W_k\}, \quad W_k = \{z \mid ||z - y|| \le ||y_k - y||\}$

• Special Case: AX is closed if X is polyhedral.

NEED TO ASSUME THAT X IS RETRACTIVE

Consider closedness of $A(X \cap C)$

• In both examples the condition

 $R_X \cap R_C \cap N(A) \subset L_C$

is satisfied.

• However, in the example on the right, X is not retractive, and the set $A(X \cap C)$ is not closed.

CLOSEDNESS OF VECTOR SUMS

• Let C_1, \ldots, C_m be nonempty closed convex subsets of \Re^n such that the equality $d_1 + \cdots + d_m = 0$ for some vectors $d_i \in R_{C_i}$ implies that $d_i = 0$ for all $i = 1, \ldots, m$. Then $C_1 + \cdots + C_m$ is a closed set.

• Special Case: If C_1 and $-C_2$ are closed convex sets, then $C_1 - C_2$ is closed if $R_{C_1} \cap R_{C_2} = \{0\}$.

Proof: The Cartesian product $C = C_1 \times \cdots \times C_m$ is closed convex, and its recession cone is $R_C = R_{C_1} \times \cdots \times R_{C_m}$. Let A be defined by

$$A(x_1,\ldots,x_m) = x_1 + \cdots + x_m$$

Then

$$A C = C_1 + \dots + C_m,$$

and

$$N(A) = \{ (d_1, \dots, d_m) \mid d_1 + \dots + d_m = 0 \}$$

 $R_C \cap N(A) = \left\{ (d_1, \dots, d_m) \mid d_1 + \dots + d_m = 0, \, d_i \in R_{C_i}, \, \forall \, i \right\}$

By the given condition, $R_C \cap N(A) = \{0\}$, so AC is closed. **Q.E.D.**

MIT OpenCourseWare http://ocw.mit.edu

6.253 Convex Analysis and Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.