LECTURE 5

LECTURE OUTLINE

- Directions of recession of convex functions
- $\bullet~$ Local and global minima
- Existence of optimal solutions

DIRECTIONS OF RECESSION OF A FN

• We aim to characterize directions of monotonic decrease of convex functions.

- Some basic geometric observations:
	- − The "horizontal directions" in the recession cone of the epigraph of a convex function f are directions along which the level sets are unbounded.
	- $-$ Along these directions the level sets $\{x\}$ $f(x) \leq \gamma$ are unbounded and f is mono-| tonically nondecreasing.
- These are the *directions* of recession of f.

RECESSION CONE OF LEVEL SETS

- *Proposition*: Let $f : \mathbb{R}^n \mapsto (-\infty, \infty]$ be a closed proper convex function and consider the level sets $V_{\gamma} = \{x \mid f(x) \leq \gamma\},\$ where γ is a scalar. Then:
	- (a) All the nonempty level sets V_{γ} have the same recession cone:

$$
R_{V_{\gamma}} = \left\{ d \mid (d, 0) \in R_{\text{epi}(f)} \right\}
$$

(b) If one nonempty level set V_{γ} is compact, then all level sets are compact.

Proof: (a) Just translate to math the fact that

 $R_{V_{\gamma}}$ = the "horizontal" directions of recession of epi(f)

(b) Follows from (a).

RECESSION CONE OF A CONVEX FUNCTION

For a closed proper convex function $f: \mathbb{R}^n \mapsto$ $(-\infty,\infty]$, the (common) recession cone of the nonempty level sets $V_{\gamma} = \{x \mid f(x) \leq \gamma\}, \gamma \in \mathbb{R}$, is the *recession cone of* f , and is denoted by R_f .

- Terminology:
	- $d \in R_f$: a *direction of recession of f.*
	- $L_f = R_f \cap (-R_f)$: the *lineality space* of f.
	- $d ∈ L_f$: a *direction of constancy* of f.
- **Example:** For the pos. semidefinite quadratic

$$
f(x) = x'Qx + a'x + b,
$$

the recession cone and constancy space are

$$
R_f = \{d \mid Qd = 0, \ a'd \le 0\}, \ L_f = \{d \mid Qd = 0, \ a'd = 0\}
$$

RECESSION FUNCTION

Function $r_f : \Re^n \mapsto (-\infty, \infty]$ whose epigraph is $R_{epi(f)}$ is the *recession function* of f.

• Characterizes the recession cone:

$$
R_f = \left\{ d \mid r_f(d) \le 0 \right\}, \quad L_f = \left\{ d \mid r_f(d) = r_f(-d) = 0 \right\}
$$

since $R_f = \{(d, 0) \in R_{epi(f)}\}.$

• Can be shown that

$$
r_f(d) = \sup_{\alpha > 0} \frac{f(x + \alpha d) - f(x)}{\alpha} = \lim_{\alpha \to \infty} \frac{f(x + \alpha d) - f(x)}{\alpha}
$$

• Thus $r_f(d)$ is the "asymptotic slope" of f in the direction d. In fact,

$$
r_f(d) = \lim_{\alpha \to \infty} \nabla f(x + \alpha d)' d, \qquad \forall \ x, d \in \mathbb{R}^n
$$

- if f is differentiable.
- Calculus of recession functions:

$$
r_{f_1 + \dots + f_m}(d) = r_{f_1}(d) + \dots + r_{f_m}(d),
$$

$$
r_{\sup_{i \in I} f_i}(d) = \sup_{i \in I} r_{f_i}(d)
$$

DESCENT BEHAVIOR OF A CONVEX FN

 y is a direction of recession in $(a)-(d)$.

• This behavior is *independent of the starting point* x, as long as $x \in \text{dom}(f)$.

LOCAL AND GLOBAL MINIMA

• Consider minimizing $f : \mathbb{R}^n \mapsto (-\infty, \infty]$ over a set $X \subset \mathbb{R}^n$

• x is feasible if $x \in X \cap \text{dom}(f)$

• x^* is a (global) minimum of f over X if x^* is feasible and $f(x^*)=inf_{x\in X} f(x)$

• x^* is a local minimum of f over X if x^* is a minimum of f over a set $X \cap \{x \mid ||x - x^*|| \leq \epsilon\}$

Proposition: If X is convex and f is convex, then:

- (a) A local minimum of f over X is also a global minimum of f over X .
- (b) If f is strictly convex, then there exists at most one global minimum of f over X .

EXISTENCE OF OPTIMAL SOLUTIONS

The set of minima of a proper $f : \mathbb{R}^n \mapsto$ $(-\infty,\infty]$ is the intersection of its nonempty level sets.

• The set of minima of f is nonempty and compact if the level sets of f are compact.

• (An Extension of the) Weierstrass' Theo**rem:** The set of minima of f over X is nonempty and compact if X is closed, f is lower semicontinuous over X , and one of the following conditions holds:

- (1) X is bounded.
- (2) Some set $\{x \in X \mid f(x) \leq \gamma\}$ is nonempty and bounded.
- (3) For every sequence $\{x_k\} \subset X$ s. t. $\|x_k\| \to$ ∞, we have $\lim_{k\to\infty} f(x_k) = \infty$. (Coercivity property).

Proof: In all cases the level sets of $f \cap X$ are compact. Q.E.D.

EXISTENCE OF SOLUTIONS - CONVEX C

• Weierstrass' Theorem specialized to convex functions: Let X be a closed convex subset of \mathbb{R}^n , and let $f : \mathbb{R}^n \mapsto (-\infty, \infty]$ be closed convex with $X \cap \text{dom}(f) \neq \emptyset$. The set of minima of f over X is nonempty and compact if and only if X and f have no common nonzero direction of recession.

Proof: Let $f^* = \inf_{x \in X} f(x)$ and note that $f^* <$ ∞ since *X* ∩ dom(*f*) \neq *Ø*. Let { γ_k } be a scalar sequence with $\gamma_k \downarrow f^*$, and consider the sets

$$
V_k = \{x \mid f(x) \le \gamma_k\}.
$$

Then the set of minima of f over X is

$$
X^* = \bigcap_{k=1}^{\infty} (X \cap V_k).
$$

The sets $X \cap V_k$ are nonempty and have $R_X \cap R_f$ as their common recession cone, which is also the recession cone of X^* , when $X^* \neq \emptyset$. It follows X^* is nonempty and compact if and only if $R_X \cap R_f =$ $\{0\}$. Q.E.D.

EXISTENCE OF SOLUTION, SUM OF FNS

• Let $f_i : \Re^n \mapsto (-\infty, \infty], i = 1, \ldots, m$, be closed proper convex functions such that the function

$$
f=f_1+\cdots+f_m
$$

is proper. Assume that the recession function of a single function f_i satisfies $r_{f_i}(d) = \infty$ for all $d \neq 0$. Then the set of minima of f is nonempty and compact.

• Proof: The set of minima of f is nonempty and compact if and only if $R_f = \{0\}$, which is true if and only if $r_f(d) > 0$ for all $d \neq 0$. Q.E.D.

Example of application: If one of the f_i is positive definite quadratic, the set of minima of the sum f is nonempty and compact.

• Also f has a unique minimum because the positive definite quadratic is strictly convex, which makes f strictly convex.

PROJECTION THEOREM

- Let C be a nonempty closed convex set in \mathbb{R}^n .
	- (a) For every $z \in \mathbb{R}^n$, there exists a unique minimum of

 $f(x) = ||z - x||^2$

over all $x \in C$ (called the *projection* of z on C).

(b) x^* is the projection of z if and only if

$$
(x - x^*)'(z - x^*) \le 0, \qquad \forall \ x \in C
$$

Proof: (a) f is strictly convex and has compact level sets.

(b) This is just the necessary and sufficient optimality condition

$$
\nabla f(x^*)'(x - x^*) \ge 0, \qquad \forall \ x \in C.
$$

MIT OpenCourseWare <http://ocw.mit.edu>

6.253 Convex Analysis and Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: <http://ocw.mit.edu/terms>.