LECTURE 5

LECTURE OUTLINE

- Directions of recession of convex functions
- Local and global minima
- Existence of optimal solutions

DIRECTIONS OF RECESSION OF A FN

• We aim to characterize directions of monotonic decrease of convex functions.

- Some basic geometric observations:
 - The "horizontal directions" in the recession cone of the epigraph of a convex function fare directions along which the level sets are unbounded.
 - Along these directions the level sets $\{x \mid f(x) \leq \gamma\}$ are unbounded and f is monotonically nondecreasing.
- These are the directions of recession of f.

RECESSION CONE OF LEVEL SETS

- Proposition: Let $f : \Re^n \mapsto (-\infty, \infty]$ be a closed proper convex function and consider the level sets $V_{\gamma} = \{x \mid f(x) \leq \gamma\}$, where γ is a scalar. Then:
 - (a) All the nonempty level sets V_{γ} have the same recession cone:

$$R_{V_{\gamma}} = \left\{ d \mid (d,0) \in R_{\operatorname{epi}(f)} \right\}$$

(b) If one nonempty level set V_{γ} is compact, then all level sets are compact.

Proof: (a) Just translate to math the fact that

 $R_{V_{\gamma}}$ = the "horizontal" directions of recession of epi(f)

(b) Follows from (a).

RECESSION CONE OF A CONVEX FUNCTION

• For a closed proper convex function $f : \Re^n \mapsto (-\infty, \infty]$, the (common) recession cone of the nonempty level sets $V_{\gamma} = \{x \mid f(x) \leq \gamma\}, \gamma \in \Re$, is the *re*cession cone of f, and is denoted by R_f .

- Terminology:
 - $d \in R_f$: a direction of recession of f.
 - $-L_f = R_f \cap (-R_f)$: the lineality space of f.
 - $d \in L_f$: a direction of constancy of f.
- **Example:** For the pos. semidefinite quadratic

$$f(x) = x'Qx + a'x + b,$$

the recession cone and constancy space are

$$R_f = \{d \mid Qd = 0, \ a'd \le 0\}, \ L_f = \{d \mid Qd = 0, \ a'd = 0\}$$

RECESSION FUNCTION

• Function $r_f : \Re^n \mapsto (-\infty, \infty]$ whose epigraph is $R_{\text{epi}(f)}$ is the recession function of f.

• Characterizes the recession cone:

$$R_f = \{ d \mid r_f(d) \le 0 \}, \quad L_f = \{ d \mid r_f(d) = r_f(-d) = 0 \}$$

since $R_f = \{(d, 0) \in R_{epi(f)}\}.$

• Can be shown that

$$r_f(d) = \sup_{\alpha > 0} \frac{f(x + \alpha d) - f(x)}{\alpha} = \lim_{\alpha \to \infty} \frac{f(x + \alpha d) - f(x)}{\alpha}$$

• Thus $r_f(d)$ is the "asymptotic slope" of f in the direction d. In fact,

$$r_f(d) = \lim_{\alpha \to \infty} \nabla f(x + \alpha d)' d, \quad \forall x, d \in \Re^n$$

- if f is differentiable.
- Calculus of recession functions:

$$r_{f_1 + \dots + f_m}(d) = r_{f_1}(d) + \dots + r_{f_m}(d),$$

 $r_{\sup_{i \in I} f_i}(d) = \sup_{i \in I} r_{f_i}(d)$

DESCENT BEHAVIOR OF A CONVEX FN

• y is a direction of recession in (a)-(d).

• This behavior is independent of the starting point x, as long as $x \in \text{dom}(f)$.

LOCAL AND GLOBAL MINIMA

• Consider minimizing $f: \Re^n \mapsto (-\infty, \infty]$ over a set $X \subset \Re^n$

• x is **feasible** if $x \in X \cap \text{dom}(f)$

• x^* is a (global) **minimum** of f over X if x^* is feasible and $f(x^*) = \inf_{x \in X} f(x)$

• x^* is a **local minimum** of f over X if x^* is a minimum of f over a set $X \cap \{x \mid ||x - x^*|| \le \epsilon\}$

Proposition: If X is convex and f is convex, then:

- (a) A local minimum of f over X is also a global minimum of f over X.
- (b) If f is strictly convex, then there exists at most one global minimum of f over X.

EXISTENCE OF OPTIMAL SOLUTIONS

• The set of minima of a proper $f : \Re^n \mapsto (-\infty, \infty]$ is the intersection of its nonempty level sets.

• The set of minima of f is nonempty and compact if the level sets of f are compact.

• (An Extension of the) Weierstrass' Theorem: The set of minima of f over X is nonempty and compact if X is closed, f is lower semicontinuous over X, and one of the following conditions holds:

- (1) X is bounded.
- (2) Some set $\{x \in X \mid f(x) \le \gamma\}$ is nonempty and bounded.
- (3) For every sequence $\{x_k\} \subset X$ s. t. $||x_k|| \to \infty$, we have $\lim_{k\to\infty} f(x_k) = \infty$. (Coercivity property).

Proof: In all cases the level sets of $f \cap X$ are compact. **Q.E.D.**

EXISTENCE OF SOLUTIONS - CONVEX C

• Weierstrass' Theorem specialized to convex functions: Let X be a closed convex subset of \Re^n , and let $f : \Re^n \mapsto (-\infty, \infty]$ be closed convex with $X \cap \operatorname{dom}(f) \neq \emptyset$. The set of minima of f over X is nonempty and compact if and only if X and f have no common nonzero direction of recession.

Proof: Let $f^* = \inf_{x \in X} f(x)$ and note that $f^* < \infty$ since $X \cap \operatorname{dom}(f) \neq \emptyset$. Let $\{\gamma_k\}$ be a scalar sequence with $\gamma_k \downarrow f^*$, and consider the sets

$$V_k = \{ x \mid f(x) \le \gamma_k \}.$$

Then the set of minima of f over X is

$$X^* = \cap_{k=1}^{\infty} (X \cap V_k).$$

The sets $X \cap V_k$ are nonempty and have $R_X \cap R_f$ as their common recession cone, which is also the recession cone of X^* , when $X^* \neq \emptyset$. It follows X^* is nonempty and compact if and only if $R_X \cap R_f =$ $\{0\}$. **Q.E.D.**

EXISTENCE OF SOLUTION, SUM OF FNS

• Let $f_i: \Re^n \mapsto (-\infty, \infty], i = 1, \dots, m$, be closed proper convex functions such that the function

$$f = f_1 + \dots + f_m$$

is proper. Assume that the recession function of a single function f_i satisfies $r_{f_i}(d) = \infty$ for all $d \neq 0$. Then the set of minima of f is nonempty and compact.

• **Proof:** The set of minima of f is nonempty and compact if and only if $R_f = \{0\}$, which is true if and only if $r_f(d) > 0$ for all $d \neq 0$. **Q.E.D.**

• Example of application: If one of the f_i is positive definite quadratic, the set of minima of the sum f is nonempty and compact.

• Also f has a unique minimum because the positive definite quadratic is strictly convex, which makes f strictly convex.

PROJECTION THEOREM

- Let C be a nonempty closed convex set in \Re^n .
 - (a) For every $z \in \Re^n$, there exists a unique minimum of

$$f(x) = \|z - x\|^2$$

over all $x \in C$ (called the projection of z on C).

(b) x^* is the projection of z if and only if

$$(x - x^*)'(z - x^*) \le 0, \qquad \forall \ x \in C$$

Proof: (a) f is strictly convex and has compact level sets.

(b) This is just the necessary and sufficient optimality condition

$$\nabla f(x^*)'(x-x^*) \ge 0, \qquad \forall \ x \in C.$$

MIT OpenCourseWare http://ocw.mit.edu

6.253 Convex Analysis and Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.