LECTURE 4

LECTURE OUTLINE

- Algebra of relative interiors and closures
- Continuity of convex functions
- Closures of functions
- Recession cones and lineality space

CALCULUS OF REL. INTERIORS: SUMMARY

- The $ri(C)$ and $cl(C)$ of a convex set C "differ very little."
	- $-$ Any set "between" ri(C) and cl(C) has the same relative interior and closure.
	- − The relative interior of a convex set is equal to the relative interior of its closure.
	- − The closure of the relative interior of a convex set is equal to its closure.

• Relative interior and closure commute with Cartesian product and inverse image under a linear transformation.

• Relative interior commutes with image under a linear transformation and vector sum, but closure does not.

• Neither relative interior nor closure commute with set intersection.

CLOSURE VS RELATIVE INTERIOR

• *Proposition*:

(a) We have $\text{cl}(C) = \text{cl}(\text{ri}(C))$ and $\text{ri}(C) = \text{ri}(\text{cl}(C)).$

- (b) Let C be another nonempty convex set. Then the following three conditions are equivalent:
	- (i) C and C have the same rel. interior.
	- (ii) C and C have the same closure.
	- (iii) $\operatorname{ri}(C) \subset C \subset \operatorname{cl}(C)$.

Proof: (a) Since $ri(C) \subset C$, we have $cl(ri(C))$ ⊂ cl(C). Conversely, let $x \in \text{cl}(C)$. Let $x \in \text{ri}(C)$. By the Line Segment Principle, we have

$$
\alpha x + (1 - \alpha)x \in \text{ri}(C), \qquad \forall \alpha \in (0, 1].
$$

Thus, x is the limit of a sequence that lies in $ri(C)$, so $x \in \text{cl}(\text{ri}(C)).$

The proof of $ri(C) = ri(cl(C))$ is similar.

LINEAR TRANSFORMATIONS

• Let C be a nonempty convex subset of \mathbb{R}^n and let A be an $m \times n$ matrix.

- (a) We have $A \cdot ri(C)=ri(A \cdot C)$.
- (b) We have $A \cdot \text{cl}(C) \subset \text{cl}(A \cdot C)$. Furthermore, if C is bounded, then $A \cdot \text{cl}(C) = \text{cl}(A \cdot C)$.

Proof: (a) Intuition: Spheres within C are mapped onto spheres within $A \cdot C$ (relative to the affine hull).

(b) We have $A \cdot cl(C) \subset cl(A \cdot C)$, since if a sequence ${x_k} \subset C$ converges to some $x \in cl(C)$ then the sequence $\{Ax_k\}$, which belongs to $A \cdot C$, converges to Ax , implying that $Ax \in cl(A \cdot C)$.

To show the converse, assuming that C is bounded, choose any $z \in \text{cl}(A \cdot C)$. Then, there exists $\{x_k\} \subset C$ such that $Ax_k \to z$. Since C is bounded, $\{x_k\}$ has a subsequence that converges to some $x \in \text{cl}(C)$, and we must have $Ax = z$. It follows that $z \in A \cdot \text{cl}(C)$. Q.E.D.

Note that in general, we may have

 $A \cdot \text{int}(C) \neq \text{int}(A \cdot C), \qquad A \cdot \text{cl}(C) \neq \text{cl}(A \cdot C)$

INTERSECTIONS AND VECTOR SUMS

• Let C_1 and C_2 be nonempty convex sets. (a) We have

 $ri(C_1 + C_2) = ri(C_1) + ri(C_2),$ $cl(C_1)+cl(C_2) \subset cl(C_1+C_2)$ If one of C_1 and C_2 is bounded, then $cl(C_1)+cl(C_2)=cl(C_1+C_2)$ (b) If $\text{ri}(C_1) \cap \text{ri}(C_2) \neq \emptyset$, then $ri(C_1 \cap C_2) = ri(C_1) \cap ri(C_2),$ $cl(C_1 \cap C_2) = cl(C_1) \cap cl(C_2)$

Proof of (a): $C_1 + C_2$ is the result of the linear transformation $(x_1, x_2) \mapsto x_1 + x_2$.

• Counterexample for (b) :

$$
C_1 = \{x \mid x \le 0\}, \qquad C_2 = \{x \mid x \ge 0\}
$$

CARTESIAN PRODUCT - GENERALIZATION

• Let C be convex set in \Re^{n+m} . For $x \in \Re^n$, let

$$
C_x = \{ y \mid (x, y) \in C \},
$$

and let

$$
D = \{x \mid C_x \neq \emptyset\}.
$$

Then

$$
ri(C) = \{(x, y) | x \in ri(D), y \in ri(C_x)\}.
$$

Proof: Since D is projection of C on x -axis,

 $ri(D) = \{x \mid \text{there exists } y \in \Re^m \text{ with } (x, y) \in ri(C) \},$ so that

$$
ri(C) = \cup_{x \in ri(D)} \Big(M_x \cap ri(C) \Big),
$$

where $M_x = \{(x, y) \mid y \in \Re^m\}$. For every $x \in$ $ri(D)$, we have

$$
M_x \cap \text{ri}(C) = \text{ri}(M_x \cap C) = \{(x, y) \mid y \in \text{ri}(C_x)\}.
$$

Combine the preceding two equations. Q.E.D.

CONTINUITY OF CONVEX FUNCTIONS

• If $f : \mathbb{R}^n \mapsto \mathbb{R}$ is convex, then it is continuous.

Proof: We will show that f is continuous at 0. By convexity, f is bounded within the unit cube by the max value of f over the corners of the cube.

Consider sequence $x_k \to 0$ and the sequences $y_k = x_k/||x_k||_{\infty}, z_k = -x_k/||x_k||_{\infty}.$ Then

$$
f(x_k) \le (1 - \|x_k\|_{\infty})f(0) + \|x_k\|_{\infty}f(y_k)
$$

$$
f(0) \le \frac{\|x_k\|_{\infty}}{\|x_k\|_{\infty} + 1} f(z_k) + \frac{1}{\|x_k\|_{\infty} + 1} f(x_k)
$$

Take limit as $k \to \infty$. Since $||x_k||_{\infty} \to 0$, we have $\limsup_{k} \|x_k\|_{\infty} f(y_k) \leq 0, \limsup_{k} \frac{\|x_k\|_{\infty}}{\|x_k\|_{\infty}+1} f(z_k) \leq 0$ $k\rightarrow\infty$ $||x_k||_{\infty} J(y_k) \leq 0$, $\limsup_{k\to\infty} ||x_k||_{\infty} + 1$ so $f(x_k) \rightarrow f(0)$. Q.E.D.

• Extension to continuity over $\operatorname{ri}(\operatorname{dom}(f)).$

CLOSURES OF FUNCTIONS

The *closure* of a function $f: X \mapsto [-\infty, \infty]$ is the function cl $f : \Re^n \mapsto [-\infty, \infty]$ with $epi(cl f) = cl(epi(f))$

- The *convex closure* of f is the function \check{c} f with $epi(\check{cl} f) = cl(conv(epi(f)))$
- *Proposition*: For any $f: X \mapsto [-\infty, \infty]$

$$
\inf_{x \in X} f(x) = \inf_{x \in \mathbb{R}^n} (\operatorname{cl} f)(x) = \inf_{x \in \mathbb{R}^n} (\check{\operatorname{cl}} f)(x).
$$

Also, any vector that attains the infimum of f over X also attains the infimum of cl f and cl f .

- *Proposition*: For any $f : X \mapsto [-\infty, \infty]$:
	- (a) cl f (or cl f) is the greatest closed (or closed convex, resp.) function majorized by f .
	- (b) If f is convex, then cl f is convex, and it is proper if and only if f is proper. Also, $(\operatorname{cl} f)(x) = f(x), \qquad \forall x \in \operatorname{ri}(\operatorname{dom}(f)),$ and if $x \in \text{ri}(\text{dom}(f))$ and $y \in \text{dom}(\text{cl } f)$, $(\text{cl } f)(y) = \lim_{\alpha \downarrow 0} f(y + \alpha(x - y)).$

RECESSION CONE OF A CONVEX SET

Given a nonempty convex set C , a vector d is a *direction of recession* if starting at any x in C and going indefinitely along d , we never cross the relative boundary of C to points outside C :

$$
x + \alpha d \in C, \qquad \forall \ x \in C, \ \forall \ \alpha \ge 0
$$

Recession cone of C (denoted by R_C): The set of all directions of recession.

 R_C is a cone containing the origin.

RECESSION CONE THEOREM

- Let C be a nonempty closed convex set.
	- (a) The recession cone R_C is a closed convex cone.
	- (b) A vector d belongs to R_C if and only if there exists *some* vector $x \in C$ such that $x + \alpha d \in$ C for all $\alpha > 0$.
	- (c) R_C contains a nonzero direction if and only if C is unbounded.
	- (d) The recession cones of C and $\text{ri}(C)$ are equal.
	- (e) If D is another closed convex set such that $C \cap D \neq \emptyset$, we have

$$
R_{C \cap D} = R_C \cap R_D
$$

More generally, for any collection of closed convex sets C_i , $i \in I$, where I is an arbitrary index set and $\cap_{i\in I}C_i$ is nonempty, we have

$$
R_{\cap_{i \in I} C_i} = \cap_{i \in I} R_{C_i}
$$

PROOF OF PART (B)

• Let $d \neq 0$ be such that there exists a vector $x \in C$ with $x + \alpha d \in C$ for all $\alpha \geq 0$. We fix $x \in C$ and $\alpha > 0$, and we show that $x + \alpha d \in C$. By scaling d, it is enough to show that $x + d \in C$. For $k = 1, 2, ...,$ let

$$
z_k = x + kd
$$
, $d_k = \frac{(z_k - x)}{\|z_k - x\|} \|d\|$

We have

$$
\frac{d_k}{\|d\|} = \frac{\|z_k - x\|}{\|z_k - x\|} \frac{d}{\|d\|} + \frac{x - x}{\|z_k - x\|}, \quad \frac{\|z_k - x\|}{\|z_k - x\|} \to 1, \quad \frac{x - x}{\|z_k - x\|} \to 0,
$$

so $d_k \to d$ and $x + d_k \to x + d$. Use the convexity

and closedness of C to conclude that $x + d \in C$.

LINEALITY SPACE

• The *lineality* space of a convex set C, denoted by L_C , is the subspace of vectors d such that $d \in R_C$ and $-d \in R_C$:

$$
L_C = R_C \cap (-R_C)
$$

If $d \in L_C$, the entire line defined by d is contained in C , starting at any point of C .

• *Decomposition of a Convex Set*: Let C be a nonempty convex subset of \mathbb{R}^n . Then,

$$
C = L_C + (C \cap L_C^{\perp}).
$$

• Allows us to prove properties of C on $C \cap L_C^{\perp}$ and extend them to C.

• True also if L_C is replaced by a subspace $S \subset$ L_C .

MIT OpenCourseWare <http://ocw.mit.edu>

6.253 Convex Analysis and Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: <http://ocw.mit.edu/terms>.