
LECTURE 4


LECTURE OUTLINE


•	 Algebra of relative interiors and closures


•	 Continuity of convex functions 

Closures of functions • 

•	 Recession cones and lineality space 

All figures are courtesy of Athena Scientific, and are used with permission.



CALCULUS OF REL. INTERIORS: SUMMARY


• The ri(C) and cl(C) of a convex set C “differ 
very little.” 

− Any set “between” ri(C) and cl(C) has the 
same relative interior and closure. 

− The relative interior of a convex set is equal 
to the relative interior of its closure. 

−	 The closure of the relative interior of a con
vex set is equal to its closure. 

Relative interior and closure commute with • 
Cartesian product and inverse image under a lin

ear transformation. 

• Relative interior commutes with image under a 
linear transformation and vector sum, but closure 
does not. 

Neither relative interior nor closure commute • 
with set intersection. 



CLOSURE VS RELATIVE INTERIOR 

• Proposition: 

(a) We have cl(C) = cl
�
ri(C)

� 
and ri(C) =  ri

�
cl(C)

�
.


(b) Let C be another nonempty convex set. Then

the following three conditions are equivalent:


(i) C and C have the same rel. interior.


(ii) C and C have the same closure. 

(iii) ri(C) ⊂ C ⊂ cl(C). 

Proof: (a) Since ri(C) ⊂ C, we have cl
�
ri(C)

� 
⊂

cl(C). Conversely, let x ∈ cl(C). Let x ∈ ri(C). 
By the Line Segment Principle, we have 

αx + (1  − α)x ∈ ri(C), ∀ α ∈ (0, 1]. 

Thus, x is the limit of a sequence that lies in ri(C), 
so x ∈ cl

�
ri(C)

�
. 

x 

x 
C 

The proof of ri(C) = ri
�
cl(C)

� 
is similar.




LINEAR TRANSFORMATIONS


• Let C be a nonempty convex subset of �n and 
let A be an m × n matrix. 

(a) We have A ri(C) = ri(A C).· · 
(b) We have A cl(C) ⊂ cl(A C). Furthermore,
· · 

if C is bounded, then A cl(C) = cl(A C).· · 
Proof: (a) Intuition: Spheres within C are mapped 
onto spheres within A C (relative to the affine · 
hull). 

(b) We have A cl(C) ⊂ cl(A C), since if a sequence
· ·
{xk} ⊂ C converges to some x ∈ cl(C) then the  
sequence {Axk}, which belongs to A C, converges ·
to Ax, implying that Ax ∈ cl(A C).· 

To show the converse, assuming that C is 
bounded, choose any z ∈ cl(A C). Then, there · 
exists {xk} ⊂ C such that Axk z. Since  C is→
bounded, {xk} has a subsequence that converges 
to some x ∈ cl(C), and we must have Ax = z. It  
follows that z ∈ A cl(C). Q.E.D. · 

Note that in general, we may have 

A · int(C) = int(� A · C), A · cl(C) = cl(� A · C)




INTERSECTIONS AND VECTOR SUMS


• Let C1 and C2 be nonempty convex sets. 

(a) We have


ri(C1 + C2) =  ri(C1) + ri(C2),


cl(C1) + cl(C2) ⊂ cl(C1 + C2)


If one of C1 and C2 is bounded, then 

cl(C1) + cl(C2) = cl(C1 + C2) 

(b) If ri(C1) ∩ ri(C2) =� Ø, then 


ri(C1 ∩ C2) =  ri(C1) ∩ ri(C2),


cl(C1 ∩ C2) = cl(C1) ∩ cl(C2)


Proof of (a): C1 + C2 is the result of the linear 
transformation (x1, x2) �→ x1 + x2. 

• Counterexample for (b): 

C1 = {x | x ≤ 0}, C2 = {x | x ≥ 0} 



CARTESIAN PRODUCT - GENERALIZATION


•	 Let C be convex set in �n+m. For x ∈ �n, let  

Cx = {y | (x, y) ∈ C}, 

and let 
D = {x | Cx =� Ø}. 

Then 

ri(C) =  
�
(x, y) | x ∈ ri(D), y  ∈ ri(Cx)

�
. 

Proof: Since D is projection of C on x-axis, 

ri(D) =  
�
x | there exists y ∈ �m with (x, y) ∈ ri(C)

�
, 

so that 

ri(C) =  ∪x∈ri(D) 

�
Mx ∩ ri(C)

� 
, 

where Mx = 
�
(x, y) | y ∈ �m

�
. For every x ∈


ri(D), we have


Mx ∩ ri(C) = ri(Mx ∩ C) =  
�
(x, y) | y ∈ ri(Cx)

�
.


Combine the preceding two equations. Q.E.D.




CONTINUITY OF CONVEX FUNCTIONS 

n • If f : � �→ � is convex, then it is continuous. 
e4 = (−1, 1) 

= 

Proof: We will show that f is continuous at 0.

By convexity, f is bounded within the unit cube

by the max value of f over the corners of the cube.


Consider sequence xk → 0 and the sequences

yk = xk/�xk�∞, zk = −xk/�xk�∞. Then 


f(xk) ≤
�
1 − �xk�∞

�
f(0) + �xk�∞f(yk) 

xk�∞ 1 
f(0) ≤ 

x

�
k�∞ + 1  

f(zk) +  
xk�∞ + 1  

f(xk)
� �


Take limit as k →∞. Since  �xk�∞ → 0, we have


lim sup xk�∞f(yk) ≤ 0, lim sup 
�xk�∞ 

f(zk) ≤ 0 
k→∞ 

�
k→∞ �xk�∞ + 1  

so f(xk) f(0). Q.E.D. →

• Extension to continuity over ri(dom(f)). 



CLOSURES OF FUNCTIONS


• The closure of a function f : X �→ [−∞, ∞] is  
the function cl f : �n �→ [−∞, ∞] with  

epi(cl f) = cl
�
epi(f)

�


The convex closure of f is the function cľ f with• 

epi(cľ f) = cl
�
conv

�
epi(f)

��


• Proposition: For any f : X �→ [−∞, ∞] 

inf f(x) =  inf  (cl f)(x) =  inf  (cľ f)(x).

x∈X x∈�n x∈�n

Also, any vector that attains the infimum of f over 
X also attains the infimum of cl f and cľ f . 

• Proposition: For any f : X �→ [−∞, ∞]: 

(a) cl f (or cľ f) is the greatest closed (or closed

convex, resp.) function majorized by f .


(b) If f is convex, then cl f is convex, and it is

proper if and only if f is proper. Also,


(cl f)(x) =  f(x), ∀ x ∈ ri
�
dom(f)

�
,


and if x ∈ ri
�
dom(f)

� 
and y ∈ dom(cl f), 

(cl f)(y) = lim f
�
y + α(x − y)

�
.


α 0↓



RECESSION CONE OF A CONVEX SET


• Given a nonempty convex set C, a vector d is 
a direction of recession if starting at any x in C 
and going indefinitely along d, we never cross the 
relative boundary of C to points outside C: 

x + αd ∈ C, ∀ x ∈ C, ∀ α ≥ 0


Recession Cone RC 

• Recession cone of C (denoted by RC ): The set 
of all directions of recession. 

• RC is a cone containing the origin. 



RECESSION CONE THEOREM


• Let C be a nonempty closed convex set. 

(a) The recession cone	 RC is a closed convex 
cone. 

(b) A vector d belongs to RC if and only if there 
exists some vector x ∈ C such that x + αd ∈
C for all α ≥ 0. 

(c)	 RC contains a nonzero direction if and only 
if C is unbounded. 

(d) The recession cones of C and ri(C) are equal.


(e) If D is another closed convex set such that 
C ∩ D =� Ø, we  have  

RC∩D = RC ∩ RD 

More generally, for any collection of closed 
convex sets Ci, i ∈ I, where  I is an arbitrary 
index set and ∩i∈I Ci is nonempty, we have 

R∩i∈I Ci = ∩i∈I RCi 



PROOF OF PART (B)


x + d3 

Let d = 0 be such that there exists a vector • �
x ∈ C with x + αd ∈ C for all α ≥ 0. We fix

x ∈ C and α > 0, and we show that x + αd ∈ C.

By scaling d, it is enough to show that x + d ∈ C.


For k = 1, 2, . . ., let  

(zk − x)
zk = x + kd, dk = �zk − x��d� 

We have 

dk = 
�zk − x� d 

+ 
x − x

, 
�zk − x� 

1,
x − x 

0, 
�d� �zk − x� �d� �zk − x� �zk − x�

→ 
�zk − x�

→ 

so dk → d and x + dk → x + d. Use the convexity

and closedness of C to conclude that x + d ∈ C.




LINEALITY SPACE


• The lineality space of a convex set C, denoted by 
LC , is the subspace of vectors d such that d ∈ RC 

and −d ∈ RC : 

LC = RC ∩ (−RC ) 

• If d ∈ LC , the  entire  line  defined  by  d is con
tained in C, starting at any point of C. 

• Decomposition of a Convex Set: Let C be a 
nonempty convex subset of �n. Then,  

C = LC + (C ∩ L⊥).C 

• Allows us to prove properties of C on C ∩ L⊥C 
and extend them to C. 

• True also if LC is replaced by a subspace S ⊂
LC . 

z 
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