LECTURE 4

LECTURE OUTLINE

- Algebra of relative interiors and closures
- Continuity of convex functions
- Closures of functions
- Recession cones and lineality space

CALCULUS OF REL. INTERIORS: SUMMARY

- The ri(C) and cl(C) of a convex set C "differ very little."
 - Any set "between" ri(C) and cl(C) has the same relative interior and closure.
 - The relative interior of a convex set is equal to the relative interior of its closure.
 - The closure of the relative interior of a convex set is equal to its closure.

• Relative interior and closure commute with Cartesian product and inverse image under a linear transformation.

• Relative interior commutes with image under a linear transformation and vector sum, but closure does not.

• Neither relative interior nor closure commute with set intersection.

CLOSURE VS RELATIVE INTERIOR

• Proposition:

(a) We have $\operatorname{cl}(C) = \operatorname{cl}(\operatorname{ri}(C))$ and $\operatorname{ri}(C) = \operatorname{ri}(\operatorname{cl}(C))$.

- (b) Let C be another nonempty convex set. Then the following three conditions are equivalent:
 - (i) C and C have the same rel. interior.
 - (ii) C and C have the same closure.
 - (iii) $\operatorname{ri}(C) \subset C \subset \operatorname{cl}(C)$.

Proof: (a) Since $\operatorname{ri}(C) \subset C$, we have $\operatorname{cl}(\operatorname{ri}(C)) \subset \operatorname{cl}(C)$. Conversely, let $x \in \operatorname{cl}(C)$. Let $x \in \operatorname{ri}(C)$. By the Line Segment Principle, we have

$$\alpha x + (1 - \alpha)x \in \operatorname{ri}(C), \qquad \forall \ \alpha \in (0, 1].$$

Thus, x is the limit of a sequence that lies in ri(C), so $x \in cl(ri(C))$.

The proof of ri(C) = ri(cl(C)) is similar.

LINEAR TRANSFORMATIONS

• Let C be a nonempty convex subset of \Re^n and let A be an $m \times n$ matrix.

- (a) We have $A \cdot \operatorname{ri}(C) = \operatorname{ri}(A \cdot C)$.
- (b) We have $A \cdot \operatorname{cl}(C) \subset \operatorname{cl}(A \cdot C)$. Furthermore, if C is bounded, then $A \cdot \operatorname{cl}(C) = \operatorname{cl}(A \cdot C)$.

Proof: (a) Intuition: Spheres within C are mapped onto spheres within $A \cdot C$ (relative to the affine hull).

(b) We have $A \cdot cl(C) \subset cl(A \cdot C)$, since if a sequence $\{x_k\} \subset C$ converges to some $x \in cl(C)$ then the sequence $\{Ax_k\}$, which belongs to $A \cdot C$, converges to Ax, implying that $Ax \in cl(A \cdot C)$.

To show the converse, assuming that C is bounded, choose any $z \in cl(A \cdot C)$. Then, there exists $\{x_k\} \subset C$ such that $Ax_k \to z$. Since C is bounded, $\{x_k\}$ has a subsequence that converges to some $x \in cl(C)$, and we must have Ax = z. It follows that $z \in A \cdot cl(C)$. **Q.E.D.**

Note that in general, we may have

 $A \cdot \operatorname{int}(C) \neq \operatorname{int}(A \cdot C), \qquad A \cdot \operatorname{cl}(C) \neq \operatorname{cl}(A \cdot C)$

INTERSECTIONS AND VECTOR SUMS

Let C₁ and C₂ be nonempty convex sets.
(a) We have

 $\operatorname{ri}(C_1 + C_2) = \operatorname{ri}(C_1) + \operatorname{ri}(C_2),$ $\operatorname{cl}(C_1) + \operatorname{cl}(C_2) \subset \operatorname{cl}(C_1 + C_2)$ If one of C_1 and C_2 is bounded, then $\operatorname{cl}(C_1) + \operatorname{cl}(C_2) = \operatorname{cl}(C_1 + C_2)$ (b) If $\operatorname{ri}(C_1) \cap \operatorname{ri}(C_2) \neq \emptyset$, then $\operatorname{ri}(C_1 \cap C_2) = \operatorname{ri}(C_1) \cap \operatorname{ri}(C_2),$

$$\operatorname{cl}(C_1 \cap C_2) = \operatorname{cl}(C_1) \cap \operatorname{cl}(C_2)$$

Proof of (a): $C_1 + C_2$ is the result of the linear transformation $(x_1, x_2) \mapsto x_1 + x_2$.

• Counterexample for (b):

$$C_1 = \{ x \mid x \le 0 \}, \qquad C_2 = \{ x \mid x \ge 0 \}$$

CARTESIAN PRODUCT - GENERALIZATION

• Let C be convex set in \Re^{n+m} . For $x \in \Re^n$, let

$$C_x = \{ y \mid (x, y) \in C \},\$$

and let

$$D = \{ x \mid C_x \neq \emptyset \}.$$

Then

$$\operatorname{ri}(C) = \{(x, y) \mid x \in \operatorname{ri}(D), y \in \operatorname{ri}(C_x)\}.$$

Proof: Since D is projection of C on x-axis,

 $\operatorname{ri}(D) = \{x \mid \text{there exists } y \in \Re^m \text{ with } (x, y) \in \operatorname{ri}(C) \},\$ so that

$$\operatorname{ri}(C) = \bigcup_{x \in \operatorname{ri}(D)} \Big(M_x \cap \operatorname{ri}(C) \Big),$$

where $M_x = \{(x, y) \mid y \in \Re^m\}$. For every $x \in \operatorname{ri}(D)$, we have

$$M_x \cap \operatorname{ri}(C) = \operatorname{ri}(M_x \cap C) = \{(x, y) \mid y \in \operatorname{ri}(C_x)\}.$$

Combine the preceding two equations. Q.E.D.

CONTINUITY OF CONVEX FUNCTIONS

• If $f: \Re^n \mapsto \Re$ is convex, then it is continuous.

Proof: We will show that f is continuous at 0. By convexity, f is bounded within the unit cube by the max value of f over the corners of the cube.

Consider sequence $x_k \to 0$ and the sequences $y_k = x_k / ||x_k||_{\infty}, z_k = -x_k / ||x_k||_{\infty}$. Then

$$f(x_k) \le (1 - \|x_k\|_{\infty})f(0) + \|x_k\|_{\infty}f(y_k)$$

$$f(0) \le \frac{\|x_k\|_{\infty}}{\|x_k\|_{\infty} + 1} f(z_k) + \frac{1}{\|x_k\|_{\infty} + 1} f(x_k)$$

Take limit as $k \to \infty$. Since $||x_k||_{\infty} \to 0$, we have $\limsup_{k \to \infty} ||x_k||_{\infty} f(y_k) \leq 0, \ \limsup_{k \to \infty} \frac{||x_k||_{\infty}}{||x_k||_{\infty} + 1} f(z_k) \leq 0$ so $f(x_k) \to f(0)$. **Q.E.D.**

• Extension to continuity over ri(dom(f)).

CLOSURES OF FUNCTIONS

• The closure of a function $f: X \mapsto [-\infty, \infty]$ is the function $\operatorname{cl} f: \Re^n \mapsto [-\infty, \infty]$ with $\operatorname{epi}(\operatorname{cl} f) = \operatorname{cl}(\operatorname{epi}(f))$

- The convex closure of f is the function $\check{cl} f$ with $epi(\check{cl} f) = cl(conv(epi(f)))$
- Proposition: For any $f: X \mapsto [-\infty, \infty]$

$$\inf_{x \in X} f(x) = \inf_{x \in \Re^n} (\operatorname{cl} f)(x) = \inf_{x \in \Re^n} (\operatorname{cl} f)(x).$$

Also, any vector that attains the infimum of f over X also attains the infimum of cl f and cl f.

- Proposition: For any $f: X \mapsto [-\infty, \infty]$:
 - (a) $\operatorname{cl} f$ (or $\operatorname{cl} f$) is the greatest closed (or closed convex, resp.) function majorized by f.
 - (b) If f is convex, then $\operatorname{cl} f$ is convex, and it is proper if and only if f is proper. Also, $(\operatorname{cl} f)(x) = f(x), \quad \forall \ x \in \operatorname{ri}(\operatorname{dom}(f)),$ and if $x \in \operatorname{ri}(\operatorname{dom}(f))$ and $y \in \operatorname{dom}(\operatorname{cl} f),$ $(\operatorname{cl} f)(y) = \lim_{\alpha \to 0} f(y + \alpha(x - y)).$

RECESSION CONE OF A CONVEX SET

• Given a nonempty convex set C, a vector d is a *direction of recession* if starting at **any** x in Cand going indefinitely along d, we never cross the relative boundary of C to points outside C:

$$x + \alpha d \in C, \qquad \forall \ x \in C, \ \forall \ \alpha \ge 0$$

• Recession cone of C (denoted by R_C): The set of all directions of recession.

• R_C is a cone containing the origin.

RECESSION CONE THEOREM

- Let C be a nonempty closed convex set.
 - (a) The recession cone R_C is a closed convex cone.
 - (b) A vector d belongs to R_C if and only if there exists *some* vector $x \in C$ such that $x + \alpha d \in C$ for all $\alpha \geq 0$.
 - (c) R_C contains a nonzero direction if and only if C is unbounded.
 - (d) The recession cones of C and ri(C) are equal.
 - (e) If D is another closed convex set such that $C \cap D \neq \emptyset$, we have

$$R_{C\cap D} = R_C \cap R_D$$

More generally, for any collection of closed convex sets C_i , $i \in I$, where I is an arbitrary index set and $\bigcap_{i \in I} C_i$ is nonempty, we have

$$R_{\bigcap_{i\in I}C_i} = \bigcap_{i\in I}R_{C_i}$$

PROOF OF PART (B)

• Let $d \neq 0$ be such that there exists a vector $x \in C$ with $x + \alpha d \in C$ for all $\alpha \geq 0$. We fix $x \in C$ and $\alpha > 0$, and we show that $x + \alpha d \in C$. By scaling d, it is enough to show that $x + d \in C$.

For k = 1, 2, ..., let

$$z_k = x + kd,$$
 $d_k = \frac{(z_k - x)}{\|z_k - x\|} \|d\|$

We have

 $\begin{aligned} & \frac{d_k}{\|d\|} = \frac{\|z_k - x\|}{\|z_k - x\|} \frac{d}{\|d\|} + \frac{x - x}{\|z_k - x\|}, & \frac{\|z_k - x\|}{\|z_k - x\|} \to 1, & \frac{x - x}{\|z_k - x\|} \to 0, \\ & \text{so } d_k \to d \text{ and } x + d_k \to x + d. & \text{Use the convexity} \\ & \text{and closedness of } C \text{ to conclude that } x + d \in C. \end{aligned}$

LINEALITY SPACE

• The *lineality space* of a convex set C, denoted by L_C , is the subspace of vectors d such that $d \in R_C$ and $-d \in R_C$:

$$L_C = R_C \cap (-R_C)$$

• If $d \in L_C$, the entire line defined by d is contained in C, starting at any point of C.

• Decomposition of a Convex Set: Let C be a nonempty convex subset of \Re^n . Then,

$$C = L_C + (C \cap L_C^{\perp}).$$

• Allows us to prove properties of C on $C \cap L_C^{\perp}$ and extend them to C.

• True also if L_C is replaced by a subspace $S \subset L_C$.

MIT OpenCourseWare http://ocw.mit.edu

6.253 Convex Analysis and Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.