
LECTURE 3


LECTURE OUTLINE


Differentiable Convex Functions
• 

Convex and Affine Hulls • 

•	 Caratheodory’s Theorem 

Relative Interior • 

All figures are courtesy of Athena Scientific, and are used with permission.



DIFFERENTIABLE CONVEX FUNCTIONS


f(x) +∇f(x)�(z − x) 

• Let C ⊂ �n be a convex set and let f : �n �→ � 
be differentiable over �n. 

(a) The function f is convex over C iff 

f(z) ≥ f(x) + (z − x)�∇f(x), ∀ x, z ∈ C 

(b) If the inequality is strict whenever	 x =� z, 
then f is strictly convex over C. 



PROOF IDEAS


f(x) +
f
�
x + α(z − x)

� 
− f (x) 

α 



OPTIMALITY CONDITION


• Let C be a nonempty convex subset of �n and 
let f : �n �→ � be convex and differentiable over 
an open set that contains C. Then a vector x∗ ∈ C 
minimizes f over C if and only if 

∇f(x∗)�(z − x∗) ≥ 0, ∀ z ∈ C. 

Proof: If the condition holds, then 

f(z) ≥ f(x∗)+(z−x∗)�∇f(x∗) ≥ f(x∗), ∀ z ∈ C, 

so x∗ minimizes f over C. 
Converse: Assume the contrary, i.e., x∗ min

imizes f over C and ∇f(x∗)�(z − x∗) < 0 for some 
z ∈ C. By differentiation, we have 

f
�
x∗ + α(z − x∗)

� 
− f(x∗)

lim = ∇f(x∗)�(z−x∗) < 0 
α 0 α↓

so f
�
x∗ + α(z − x∗)

� 
decreases strictly for suffi

ciently small α > 0, contradicting the optimality 
of x∗. Q.E.D. 



TWICE DIFFERENTIABLE CONVEX FNS


• Let C be a convex subset of �n and let f : 
�n �→ � be twice continuously differentiable over 
�n. 

(a) If ∇2f(x) is positive semidefinite for all x ∈
C, then  f is convex over C. 

(b) If ∇2f(x) is positive definite for all x ∈ C, 
then f is strictly convex over C. 

(c) If C is open and f is convex over C, then  
∇2f(x) is positive semidefinite for all x ∈ C. 

Proof: (a) By mean value theorem, for x, y ∈ C 

f(y) =  f(x)+(y−x)�∇f(x)+ 1 (y−x)�∇2f
�
x+α(y−x)

�
(y−x)2 

for some α ∈ [0, 1]. Using the positive semidefi
niteness of ∇2f , we obtain 

f(y) ≥ f(x) + (y − x)�∇f(x), ∀ x, y ∈ C


From the preceding result, f is convex.


(b) Similar to (a), we have f(y) > f(x) + (y − 
x)�∇f(x) for all x, y ∈ C with x =� y, and we use 
the preceding result. 

(c) By contradiction ... similar. 



CONVEX AND AFFINE HULLS


•	 Given a set X ⊂ �n: 

A convex combination of elements of X is a • 
vector of the form 

�m αixi, where  xi ∈ X, αi ≥
0, and 

�m
i=1 αi = 1. 

i=1 

• The convex hull of X, denoted conv(X), is the 
intersection of all convex sets containing X. (Can 
be shown to be equal to the set of all convex com
binations from X). 

• The affine hull of X, denoted aff(X), is the in
tersection of all affine sets containing X (an affine 
set is a set of the form x + S, where  S is a sub
space). 

• A nonnegative combination of elements of X is 
a vector of the form 

�m αixi, where  xi ∈ X and i=1 
αi	≥ 0 for all i. 

• The cone generated by X, denoted cone(X), is 
the set of all nonnegative combinations from X: 
− It is a convex cone containing the origin. 
− It need not be closed! 
−	 If X is a finite set, cone(X) is closed (non

trivial to show!) 



CARATHEODORY’S THEOREM


0 

• Let X be a nonempty subset of �n. 

(a) Every x = 0 in cone(� X) can be represented 
as a positive combination of vectors x1, . . . , xm 

from X that are linearly independent (so 
m ≤ n). 

(b) Every x /∈ X that belongs to conv(X) can 
be represented as a convex combination of 
vectors x1, . . . , xm from X with m ≤ n + 1. 



PROOF OF CARATHEODORY’S THEOREM


(a) Let x be a nonzero vector in cone(X), and 
let m be the smallest integer such that x has the 
form 

�m αixi, where  αi > 0 and xi ∈ X for i=1 
all i = 1, . . . ,m. If the vectors xi were linearly 
dependent, there would exist λ1, . . . , λm, with  

m� 
λixi = 0  

i=1 

and at least one of the λi is positive. Consider

m
�

(αi − γλi)xi,

i=1 

where γ is the largest γ such that αi − γλi ≥ 0 for 
all i. This combination provides a representation 
of x as a positive combination of fewer than m vec
tors of X – a contradiction. Therefore, x1, . . . , xm, 
are linearly independent. 

(b) Use “lifting” argument: apply part (a) to Y = �
(x, 1) | x ∈ X

�
. 

�n 



AN APPLICATION OF CARATHEODORY


• The convex hull of a compact set is compact.


Proof: Let X be compact. We take a sequence 
in conv(X) and show that it has a convergent sub
sequence whose limit is in conv(X). 

By Caratheodory, a sequence in conv(X) can 

be expressed as 
��n+1 

�
, where for all k and i=1 αi

kxi
k 

ki, αk ≥ 0, x ∈ X, and 
�n+1 αk = 1. Since the i i i=1 i 

sequence 

k k
�
(α1 

k , . . . , αn
k 
+1, x1 , . . . , xn+1)

� 

is bounded, it has a limit point 
�
(α1, . . . , αn+1, x1, . . . , xn+1)

�
, 

which must satisfy 
�n+1 αi = 1, and αi ≥ 0,i=1 

xi ∈ X for all i. 
The vector 

�n+1 αixi belongs to conv(X)i=1 

and is a limit point of 
��n+1 

�
, showing  i=1 αi

kxi
k


that conv(X) is compact. Q.E.D.


Note that the convex hull of a closed set need • 
not be closed! 



RELATIVE INTERIOR


• x is a relative interior point of C, if  x is an 
interior point of C relative to aff(C). 

• ri(C) denotes the relative interior of C, i.e., the  
set of all relative interior points of C. 

• Line Segment Principle: If  C is a convex set, 
x ∈ ri(C) and x ∈ cl(C), then all points on the 
line segment connecting x and x, except possibly 
x, belong to ri(C). 

α�


• Proof of case where x ∈ C: See the figure. 

• Proof of case where x /∈ C: Take sequence 
{xk} ⊂ C with xk → x. Argue as in the figure. 



ADDITIONAL MAJOR RESULTS


• Let C be a nonempty convex set. 

(a) ri(C) is a nonempty convex set, and has the 
same affine hull as C. 

(b)	 Prolongation Lemma: x ∈ ri(C) if and 
only if every line segment in C having x 
as one endpoint can be prolonged beyond x 
without leaving C. 

0 

Proof: (a) Assume that 0 ∈ C. We choose m lin
early independent vectors z1, . . . , zm ∈ C, where  
m is the dimension of aff(C), and we let 

m	 m
� � 

X = 
� 

αizi 

��� 
� 

αi < 1, αi > 0, i = 1, . . . ,m  
i=1 i=1 

(b) => is clear by the def. of rel. interior. Reverse:

take any x ∈ ri(C); use Line Segment Principle.




OPTIMIZATION APPLICATION


• A concave function f : �n �→ � that attains its 
minimum over a convex set X at an x ∈ ri(X)∗ 

must be constant over X. 

aff(X) 

Proof: (By contradiction) Let x ∈ X be such 
that f(x) > f(x∗). Prolong beyond x the line ∗ 

segment x-to-x to a point x ∈ X. By concavity
∗ 

of f , we have for some α ∈ (0, 1) 

f(x∗) ≥ αf(x) + (1  − α)f(x), 

and since f(x) > f(x∗), we must have f(x∗) > 
f(x) - a contradiction. Q.E.D. 

• Corollary: A linear function can attain a min
inum only at the boundary of a convex set. 
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