LECTURE 2

LECTURE OUTLINE

- Convex sets and functions
- Epigraphs
- Closed convex functions
- Recognizing convex functions

SOME MATH CONVENTIONS

- All of our work is done in \Re^n : space of *n*-tuples $x = (x_1, \dots, x_n)$
- All vectors are assumed column vectors
- "'" denotes transpose, so we use x' to denote a row vector
- x'y is the inner product $\sum_{i=1}^{n} x_i y_i$ of vectors x and y
- $||x|| = \sqrt{x'x}$ is the (Euclidean) norm of x. We use this norm almost exclusively
- See the textbook for an overview of the linear algebra and real analysis background that we will use. Particularly the following:
 - Definition of sup and inf of a set of real numbers
 - Convergence of sequences (definitions of lim inf, lim sup of a sequence of real numbers, and definition of lim of a sequence of vectors)
 - Open, closed, and compact sets and their properties
 - Definition and properties of differentiation

CONVEX SETS

• A subset C of \Re^n is called *convex* if

$$\alpha x + (1 - \alpha)y \in C, \quad \forall x, y \in C, \ \forall \ \alpha \in [0, 1]$$

- Operations that preserve convexity
 - Intersection, scalar multiplication, vector sum, closure, interior, linear transformations
- Special convex sets:
 - Polyhedral sets: Nonempty sets of the form

$$\{x \mid a'_j x \le b_j, j = 1, \dots, r\}$$

(always convex, closed, not always bounded)

- Cones: Sets C such that $\lambda x \in C$ for all $\lambda > 0$ and $x \in C$ (not always convex or closed)

CONVEX FUNCTIONS

• Let C be a convex subset of \Re^n . A function $f: C \mapsto \Re$ is called *convex* if for all $\alpha \in [0,1]$

$$f(\alpha x + (1-\alpha)y) \le \alpha f(x) + (1-\alpha)f(y), \quad \forall x, y \in C$$

If the inequality is strict whenever $a \in (0,1)$ and $x \neq y$, then f is called *strictly convex* over C.

• If f is a convex function, then all its level sets $\{x \in C \mid f(x) \leq \gamma\}$ and $\{x \in C \mid f(x) < \gamma\}$, where γ is a scalar, are convex.

EXTENDED REAL-VALUED FUNCTIONS

• The epigraph of a function $f: X \mapsto [-\infty, \infty]$ is the subset of \Re^{n+1} given by

$$epi(f) = \{(x, w) \mid x \in X, w \in \Re, f(x) \le w\}$$

• The effective domain of f is the set

$$dom(f) = \{x \in X \mid f(x) < \infty\}$$

- We say that f is convex if epi(f) is a convex set. If $f(x) > -\infty$ for all $x \in X$ and X is convex, the definition "coincides" with the earlier one.
- We say that f is closed if epi(f) is a closed set.
- We say that f is lower semicontinuous at a vector $x \in X$ if $f(x) \leq \liminf_{k \to \infty} f(x_k)$ for every sequence $\{x_k\} \subset X$ with $x_k \to x$.

CLOSEDNESS AND SEMICONTINUITY I

- Proposition: For a function $f: \Re^n \mapsto [-\infty, \infty]$, the following are equivalent:
 - (i) $V_{\gamma} = \{x \mid f(x) \leq \gamma\}$ is closed for all $\gamma \in \Re$.
 - (ii) f is lower semicontinuous at all $x \in \mathbb{R}^n$.
 - (iii) f is closed.

• (ii) \Rightarrow (iii): Let $\{(x_k, w_k)\} \subset \operatorname{epi}(f)$ with $(x_k, w_k) \to (x, w)$. Then $f(x_k) \leq w_k$, and

$$f(x) \le \liminf_{k \to \infty} f(x_k) \le w$$
 so $(x, w) \in \operatorname{epi}(f)$

- (iii) \Rightarrow (i): Let $\{x_k\} \subset V_{\gamma}$ and $x_k \to x$. Then $(x_k, \gamma) \in \operatorname{epi}(f)$ and $(x_k, \gamma) \to (x, \gamma)$, so $(x, \gamma) \in \operatorname{epi}(f)$, and $x \in V_{\gamma}$.
- (i) \Rightarrow (ii): If $x_k \to x$ and $f(x) > \gamma > \liminf_{k \to \infty} f(x_k)$ consider subsequence $\{x_k\}_{\mathcal{K}} \to x$ with $f(x_k) \leq \gamma$ contradicts closedness of V_{γ} .

CLOSEDNESS AND SEMICONTINUITY II

- Lower semicontinuity of a function is a "domainspecific" property, but closeness is not:
 - If we change the domain of the function without changing its epigraph, its lower semicontinuity properties may be affected.
 - **Example:** Define $f:(0,1)\to[-\infty,\infty]$ and $\hat{f}:[0,1]\to[-\infty,\infty]$ by

$$f(x) = 0, \qquad \forall \ x \in (0, 1),$$

$$\hat{f}(x) = \begin{cases} 0 & \text{if } x \in (0,1), \\ \infty & \text{if } x = 0 \text{ or } x = 1. \end{cases}$$

Then f and \hat{f} have the same epigraph, and both are not closed. But f is lower-semicontinuous while \hat{f} is not.

- Note that:
 - If f is lower semicontinuous at all $x \in \text{dom}(f)$, it is not necessarily closed
 - If f is closed, dom(f) is not necessarily closed
- Proposition: Let $f: X \mapsto [-\infty, \infty]$ be a function. If dom(f) is closed and f is lower semicontinuous at all $x \in dom(f)$, then f is closed.

PROPER AND IMPROPER CONVEX FUNCTION

- We say that f is proper if $f(x) < \infty$ for at least one $x \in X$ and $f(x) > -\infty$ for all $x \in X$, and we will call f improper if it is not proper.
- Note that f is proper if and only if its epigraph is nonempty and does not contain a "vertical line."
- An improper *closed* convex function is very peculiar: it takes an infinite value $(\infty \text{ or } -\infty)$ at every point.

RECOGNIZING CONVEX FUNCTIONS

- Some important classes of elementary convex functions: Affine functions, positive semidefinite quadratic functions, norm functions, etc.
- Proposition: Let $f_i : \Re^n \mapsto (-\infty, \infty], i \in I$, be given functions (I is an arbitrary index set).
- (a) The function $g: \Re^n \mapsto (-\infty, \infty]$ given by

$$g(x) = \lambda_1 f_1(x) + \dots + \lambda_m f_m(x), \qquad \lambda_i > 0$$

is convex (or closed) if f_1, \ldots, f_m are convex (respectively, closed).

(b) The function $g: \Re^n \mapsto (-\infty, \infty]$ given by g(x) = f(Ax)

where A is an $m \times n$ matrix is convex (or closed) if f is convex (respectively, closed).

(c) The function $g: \Re^n \mapsto (-\infty, \infty]$ given by $g(x) = \sup_{i \in I} f_i(x)$

is convex (or closed) if the f_i are convex (respectively, closed).

MIT OpenCourseWare http://ocw.mit.edu

6.253 Convex Analysis and Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.