LECTURE 2

LECTURE OUTLINE

- Convex sets and functions
- • Epigraphs
- Closed convex functions
- Recognizing convex functions

SOME MATH CONVENTIONS

• All of our work is done in \mathbb{R}^n : space of *n*-tuples $x=(x_1,\ldots,x_n)$

- All vectors are assumed column vectors
- "" denotes transpose, so we use x' to denote a row vector

• $x'y$ is the inner product $\sum_{i=1}^{n} x_i y_i$ of vectors x and y

• $||x|| = \sqrt{x'x}$ is the (Euclidean) norm of x. We use this norm almost exclusively

• See the textbook for an overview of the linear algebra and real analysis background that we will use. Particularly the following:

- − Definition of sup and inf of a set of real numbers
- − Convergence of sequences (definitions of lim inf, lim sup of a sequence of real numbers, and definition of lim of a sequence of vectors)
- − Open, closed, and compact sets and their properties
- − Definition and properties of differentiation

CONVEX SETS

• A subset C of \mathbb{R}^n is called *convex* if

 $\alpha x + (1 - \alpha)y \in C, \quad \forall x, y \in C, \forall \alpha \in [0, 1]$

- Operations that preserve convexity
	- − Intersection, scalar multiplication, vector sum, closure, interior, linear transformations
- Special convex sets:
	- − Polyhedral sets: Nonempty sets of the form

$$
\{x \mid a'_j x \leq b_j, \, j = 1, \ldots, r\}
$$

(always convex, closed, not always bounded)

− Cones: Sets C such that $\lambda x \in C$ for all $\lambda > 0$ and $x \in C$ (not always convex or closed)

CONVEX FUNCTIONS

Let C be a convex subset of \mathbb{R}^n . A function $f: C \mapsto \Re$ is called *convex* if for all $\alpha \in [0, 1]$

$$
f\big(\alpha x + (1 - \alpha)y\big) \leq \alpha f(x) + (1 - \alpha)f(y), \quad \forall \, x, y \in C
$$

If the inequality is strict whenever $a \in (0,1)$ and $x \neq y$, then f is called *strictly convex* over C.

• If f is a convex function, then all its level sets $\{x \in C \mid f(x) \leq \gamma\}$ and $\{x \in C \mid f(x) < \gamma\},\$ where γ is a scalar, are convex.

EXTENDED REAL-VALUED FUNCTIONS

• The epigraph of a function $f : X \mapsto [-\infty, \infty]$ is the subset of \Re^{n+1} given by

$$
epi(f) = \{(x, w) \mid x \in X, w \in \mathfrak{R}, f(x) \le w\}
$$

The *effective domain* of f is the set

$$
\text{dom}(f) = \left\{ x \in X \mid f(x) < \infty \right\}
$$

• We say that f is convex if $epi(f)$ is a convex set. If $f(x) > -\infty$ for all $x \in X$ and X is convex, the definition "coincides" with the earlier one.

• We say that f is *closed* if $epi(f)$ is a closed set.

We say that f is *lower semicontinuous* at a vector $x \in X$ if $f(x) \leq \liminf_{k \to \infty} f(x_k)$ for every sequence $\{x_k\} \subset X$ with $x_k \to x$.

CLOSEDNESS AND SEMICONTINUITY I

• Proposition: For a function $f : \mathbb{R}^n \mapsto [-\infty, \infty],$ the following are equivalent:

(i) $V_{\gamma} = \{x \mid f(x) \leq \gamma\}$ is closed for all $\gamma \in \Re$.

(ii) f is lower semicontinuous at all $x \in \mathbb{R}^n$.

(iii) f is closed.

(ii) \Rightarrow (iii): Let $\{(x_k, w_k)\}\subset \text{epi}(f)$ with $(x_k, w_k) \rightarrow (x, w)$. Then $f(x_k) \leq w_k$, and

 $f(x) \le \liminf_{k \to \infty} f(x_k) \le w$ so $(x, w) \in \text{epi}(f)$

• (iii) \Rightarrow (i): Let $\{x_k\} \subset V_\gamma$ and $x_k \to x$. Then $(x_k, \gamma) \in \text{epi}(f) \text{ and } (x_k, \gamma) \to (x, \gamma), \text{ so } (x, \gamma) \in$ epi(f), and $x \in V_{\gamma}$.

• (i) \Rightarrow (ii): If $x_k \to x$ and $f(x) > \gamma > \liminf_{k \to \infty} f(x_k)$ consider subsequence ${x_k}_{\mathcal{K}} \to x$ with $f(x_k) \leq \gamma$ - contradicts closedness of V_{γ} .

CLOSEDNESS AND SEMICONTINUITY II

- Lower semicontinuity of a function is a "domainspecific" property, but closeness is not:
	- − If we change the domain of the function without changing its epigraph, its lower semicontinuity properties may be affected.
	- **Example:** Define $f : (0,1) \rightarrow [-\infty,\infty]$ and $\hat{f} : [0,1] \to [-\infty,\infty]$ by

 $f(x)=0, \t\forall x \in (0,1),$

$$
\hat{f}(x) = \begin{cases}\n0 & \text{if } x \in (0,1), \\
\infty & \text{if } x = 0 \text{ or } x = 1.\n\end{cases}
$$

Then f and \hat{f} have the same epigraph, and both are not closed. But f is lower-semicontinuous while \hat{f} is not.

- Note that:
	- $-$ If f is lower semicontinuous at all $x \in \text{dom}(f)$, it is not necessarily closed
	- $-$ If f is closed, dom(f) is not necessarily closed

• Proposition: Let $f : X \mapsto [-\infty, \infty]$ be a function. If $dom(f)$ is closed and f is lower semicontinuous at all $x \in \text{dom}(f)$, then f is closed.

PROPER AND IMPROPER CONVEX FUNCTION

• We say that f is proper if $f(x) < \infty$ for at least one $x \in X$ and $f(x) > -\infty$ for all $x \in X$, and we will call f *improper* if it is not proper.

• Note that f is proper if and only if its epigraph is nonempty and does not contain a "vertical line."

• An improper *closed* convex function is very peculiar: it takes an infinite value (∞ or $-\infty$) at every point.

RECOGNIZING CONVEX FUNCTIONS

• Some important classes of elementary convex functions: Affine functions, positive semidefinite quadratic functions, norm functions, etc.

• Proposition: Let $f_i : \Re^n \mapsto (-\infty, \infty], i \in I$, be given functions $(I$ is an arbitrary index set).

(a) The function $g : \mathbb{R}^n \mapsto (-\infty, \infty]$ given by

$$
g(x) = \lambda_1 f_1(x) + \dots + \lambda_m f_m(x), \qquad \lambda_i > 0
$$

is convex (or closed) if f_1, \ldots, f_m are convex (respectively, closed).

(b) The function $g : \mathbb{R}^n \mapsto (-\infty, \infty]$ given by

$$
g(x) = f(Ax)
$$

where A is an $m \times n$ matrix is convex (or closed) if f is convex (respectively, closed).

(c) The function $g : \mathbb{R}^n \mapsto (-\infty, \infty]$ given by

$$
g(x) = \sup_{i \in I} f_i(x)
$$

is convex (or closed) if the f_i are convex (respectively, closed).

MIT OpenCourseWare <http://ocw.mit.edu>

6.253 Convex Analysis and Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: <http://ocw.mit.edu/terms>.