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LECTURE 1


AN INTRODUCTION TO THE COURSE


LECTURE OUTLINE 

• The Role of Convexity in Optimization 

• Duality Theory 

• Algorithms and Duality 

• Course Organization 



•	     

HISTORY AND PREHISTORY


Prehistory: Early 1900s - 1949.

− Caratheodory, Minkowski, Steinitz, Farkas. 

− Properties of convex sets and functions. 

•	 Fenchel - Rockafellar era: 1949 - mid 1980s. 

− Duality theory. 

− Minimax/game theory (von Neumann). 

− (Sub)differentiability, optimality conditions, 
sensitivity. 

•	 Modern era - Paradigm shift: Mid 1980s - present. 

− Nonsmooth analysis (a theoretical/esoteric 
direction). 

− Algorithms (a practical/high impact direc
tion). 

− A change in the assumptions underlying the 
field. 



OPTIMIZATION PROBLEMS


•	 Generic form: 

minimize f(x) 

subject to x ∈ C 

Cost function f	 : ℜn �→ ℜ, constraint set C, e.g., 

C = X ∩ x | h1(x) = 0, . . . , hm(x) = 0 

∩ x | g1(x) ≤ 0, . . . , gr(x) ≤ 0 

• Continuous vs discrete problem distinction 

• Convex programming problems are those for 
which f and C are convex 

− They are continuous problems 

− They are nice, and have beautiful and intu
itive structure 

• However, convexity permeates all of optimiza
tion, including discrete problems 

• Principal vehicle for continuous-discrete con
nection is duality: 

− The dual problem of a discrete problem is 
continuous/convex 

− The dual problem provides important infor
mation for the solution of the discrete primal 
(e.g., lower bounds, etc) 



•   

WHY IS CONVEXITY SO SPECIAL?


A convex function has no local minima that are
not global 

• A nonconvex function can be “convexified” while 
maintaining the optimality of its global minima 

• A convex set has a nonempty relative interior 

• A convex set is connected and has feasible di
rections at any point 

• The existence of a global minimum of a convex 
function over a convex set is conveniently charac
terized in terms of directions of recession 

• A polyhedral convex set is characterized in 
terms of a finite set of extreme points and extreme 
directions 

• A real-valued convex function is continuous and 
has nice differentiability properties 

• Closed convex cones are self-dual with respect 
to polarity 

• Convex, lower semicontinuous functions are self
dual with respect to conjugacy 



DUALITY


• Two different views of the same object. 

• Example: Dual description of signals. 

Time domain Frequency domain 

• Dual description of closed convex sets


A union of points An intersection of halfspaces




DUAL DESCRIPTION OF CONVEX FUNCTIONS


• Define a closed convex function by its epigraph. 

• Describe the epigraph by hyperplanes. 

• Associate hyperplanes with crossing points (the 
conjugate function). 

inf 
x∈ℜn 

{f (x) − x ′ y} = −f⋆(y), 

Primal Description Dual Description 

Values f(x) Crossing points f ∗(y) 



FENCHEL PRIMAL AND DUAL PROBLEMS
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Primal Problem Description Dual Problem Description 
Vertical Distances Crossing Point Differentials 

• Primal problem: 

min f1(x) + f2(x) 
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FENCHEL DUALITY
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•	 Under favorable conditions (convexity): 

− The optimal primal and dual values are equal 

− The optimal primal and dual solutions are 
related 



A MORE ABSTRACT VIEW OF DUALITY


• Despite its elegance, the Fenchel framework is 
somewhat indirect. 

•	 From duality of set descriptions, to


− duality of functional descriptions, to


− duality of problem descriptions.


•	 A more direct approach: 

− Start with a set, then 

− Define two simple prototype problems dual 
to each other. 

• Avoid functional descriptions (a simpler, less 
constrained framework). 



MIN COMMON/MAX CROSSING DUALITY


_ 

_ 

• All of duality theory and all of (convex/concave) 
minimax theory can be developed/explained in 
terms of this one figure. 

• The machinery of convex analysis is needed to 
flesh out this figure, and to rule out the excep
tional/pathological behavior shown in (c). 



ABSTRACT/GENERAL DUALITY ANALYSIS


Minimax Duality Constrained Optimization 
Duality 

MinCommon/MaxCrossing 
Theorems 

p 
Theorems of the 
Alternative etc ( MinMax = MaxMin ) 

Abstract Geometric Framework 

Special choices 
of M 

(Set M ) 



EXCEPTIONAL BEHAVIOR


• If convex structure is so favorable, what is the 
source of exceptional/pathological behavior? 

• Answer: Some common operations on convex 
sets do not preserve some basic properties. 

• Example: A linearly transformed closed con
vex set need not be closed (contrary to compact 
and polyhedral sets). 

− Also the vector sum of two closed convex sets 
need not be closed. 

= 
� � 

= 
� 

= 
� 

• This is a major reason for the analytical difficul
ties in convex analysis and pathological behavior 
in convex optimization (and the favorable charac
ter of polyhedral sets). 



MODERN VIEW OF CONVEX OPTIMIZATION


•	 Traditional view: Pre 1990s 

− LPs are solved by simplex method 

− NLPs are solved by gradient/Newton meth
ods 

− Convex programs are special cases of NLPs 

LP CONVEX NLP 

Simplex	 Duality Gradient/Newton 

•	 Modern view: Post 1990s 

− LPs are often solved by nonsimplex/convex 
methods 

− Convex problems are often solved by the same 
methods as LPs 

− “Key distinction is not Linear-Nonlinear but 
Convex-Nonconvex” (Rockafellar) 

LP CONVEX NLP 

Duality	 Gradient/Newton 
Simplex Cutting plane 

Interior point 
Subgradient 



THE RISE OF THE ALGORITHMIC ERA 

•	 Convex programs and LPs connect around


− Duality


− Large-scale piecewise linear problems


•	 Synergy of:


− Duality


− Algorithms


− Applications


•	 New problem paradigms with rich applications 

•	 Duality-based decomposition


− Large-scale resource allocation


− Lagrangian relaxation, discrete optimization


− Stochastic programming


•	 Conic programming


− Robust optimization


− Semidefinite programming


•	 Machine learning 

− Support vector machines 

− l1 regularization/Robust regression/Compressed 
sensing 



METHODOLOGICAL TRENDS 

•	 New methods, renewed interest in old methods. 

− Interior point methods 

− Subgradient/incremental methods 

− Polyhedral approximation/cutting plane meth
ods


− Regularization/proximal methods


− Incremental methods


•	 Renewed emphasis on complexity analysis 

− Nesterov, Nemirovski, and others ... 

− “Optimal algorithms” (e.g., extrapolated gra
dient methods) 

• Emphasis on interesting (often duality-related) 
large-scale special structures 



COURSE OUTLINE 

•	 We will follow closely the textbook 

− Bertsekas, “Convex Optimization Theory,” 

Athena Scientific, 2009, including the on-line 
Chapter 6 and supplementary material at 
http://www.athenasc.com/convexduality.html 

•	 Additional book references: 

− Rockafellar, “Convex Analysis,” 1970. 

− Boyd and Vanderbergue, “Convex Optimiza
tion,” Cambridge U. Press, 2004. (On-line at 

) 

− Bertsekas, Nedic, and Ozdaglar, “Convex Anal
ysis and Optimization,” Ath. Scientific, 2003. 

• Topics (the text’s design is modular, and the 
following sequence involves no loss of continuity): 

− Basic Convexity Concepts: Sect. 1.1-1.4. 

− Convexity and Optimization: Ch. 3. 

− Hyperplanes & Conjugacy: Sect. 1.5, 1.6. 

− Polyhedral Convexity: Ch. 2. 

− Geometric Duality Framework: Ch. 4. 

− Duality Theory: Sect. 5.1-5.3. 

− Subgradients: Sect. 5.4.


− 
This course makes use of Athena, MIT's UNIX-based computing environment. OCW does not provide access to this environment. Algorithms: Ch. 6.

http://www.stanford.edu/~boyd/cvxbook/

http://www.athenasc.com/convexduality.html
http://www.stanford.edu/~boyd/cvxbook/


WHAT TO EXPECT FROM THIS COURSE


• Requirements: Homework (25%), midterm (25%), 
and a term paper (50%) 

•	 We aim: 

− To develop insight and deep understanding 
of a fundamental optimization topic 

− To treat with mathematical rigor an impor
tant branch of methodological research, and 
to provide an account of the state of the art 
in the field 

− To get an understanding of the merits, limi
tations, and characteristics of the rich set of 
available algorithms 

•	 Mathematical level: 

− Prerequisites are linear algebra (preferably 
abstract) and real analysis (a course in each) 

− Proofs will matter ... but the rich geometry 
of the subject helps guide the mathematics 

•	 Applications: 

− They are many and pervasive ... but don’t 
expect much in this course. The book by 
Boyd and Vandenberghe describes a lot of 
practical convex optimization models 

− You can do your term paper on an applica
tion area 



A NOTE ON THESE SLIDES


• These slides are a teaching aid, not a text 

• Don’t expect a rigorous mathematical develop
ment 

• The statements of theorems are fairly precise, 
but the proofs are not 

• Many proofs have been omitted or greatly ab
breviated 

• Figures are meant to convey and enhance un
derstanding of ideas, not to express them precisely 

• The omitted proofs and a fuller discussion can 
be found in the “Convex Optimization Theory” 
textbook 
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