6.253: Convex Analysis and Optimization Homework 4

Prof. Dimitri P. Bertsekas

Spring 2010, M.I.T.

Problem 1

Let $f: \mathbf{R}^n \mapsto \mathbf{R}$ be the function

$$
f(x) = \frac{1}{p} \sum_{i=1}^{n} |x_i|^p
$$

where $1 < p$. Show that the conjugate is

$$
f^{\star}(y) = \frac{1}{q} \sum_{i=1}^{n} |y_i|^q,
$$

where q is defined by the relation

$$
\frac{1}{p} + \frac{1}{q} = 1.
$$

Solution.

Consider first the case $n = 1$. Let x and y be scalars. By setting the derivative of $xy - (1/p)|x|^p$ to zero, and we see that the supremum over x is attained when $sgn(x)|x|^{p-1} = y$, which implies that $xy = |x|^p$ and $|x|^{p-1} = |y|$. By substitution in the formula for the conjugate, we obtain

$$
f^*(y) = |x|^p - \frac{1}{p}|x|^p = (1 - \frac{1}{p})|x|^p = \frac{1}{q}|y|^{\frac{p}{p-1}} = \frac{1}{q}|y|^q.
$$

We now note that for any function $f : R^n \mapsto (-\infty, \infty]$ that has the form

$$
f(x) = f_1(x_1) + \cdots + f_n(x_n),
$$

where $x = (x_1, \ldots, x_n)$ and $f_i : R \mapsto (-\infty, \infty], i = 1, \ldots, n$, the conjugate is given by

$$
f^*(y) = f_1^*(y_1) + \cdots + f_n^*(y_n),
$$

where $f_i^* : R \mapsto (-\infty, \infty]$ is the conjugate of f_i , $i = 1, \ldots, n$. By combining this fact with the result above, we obtain the desired result.

(a) Show that if $f_1 : \mathbf{R}^n \mapsto (-\infty, \infty]$ and $f_2 : \mathbf{R}^n \mapsto (-\infty, \infty]$ are closed proper convex functions, with conjugates denoted by f_1^* and f_2^* , respectively, we have

$$
f_1(x) \le f_2(x), \qquad \forall \ x \in \mathbf{R}^n,
$$

if and only if

$$
f_1^{\star}(y) \ge f_2^{\star}(y), \qquad \forall \ y \in \mathbf{R}^n.
$$

(b) Show that if C_1 and C_2 are nonempty closed convex sets, we have

 $C_1 \subset C_2$,

if and only if

$$
\sigma_{C_1}(y) \leq \sigma_{C_2}(y), \qquad \forall \ y \in \mathbf{R}^n.
$$

Construct an example showing that closedness of C_1 and C_2 is a necessary assumption.

Solution.

(a) If $f_1(x) \le f_2(x)$ for all x, we have for all $y \in R^n$,

$$
f_1^*(y) = \sup_{x \in R^n} \{x'y - f_1(x)\} \ge \sup_{x \in R^n} \{x'y - f_1(x)\} = f_2^*(y).
$$

The reverse implication follows from the fact that f_1 and f_2 are the conjugates of f_1^* and f_2^* , respectively.

(b) Consider the indicator functions δ_{C_1} and δ_{C_2} of C_1 and C_2 . We have

$$
C_1 \subset C_2
$$
 if and only if $\delta_{C_1}(x) \ge \delta_{C_2}(x)$, $\forall x \in R^n$.

Since σ_{C_1} and σ_{C_2} are the conjugates of δ_{C_1} and δ_{C_2} , respectively, the result follows from part (a).

To see that the assumption of closedness of C_1 and C_2 is needed, consider two convex sets that have the same closure, but none of the two is contained in the other, such as for example $(0, 1]$ and $[0, 1)$.

 $\dots + X_r$, $conv(X_1) + \dots + conv(X_r)$, $\cup_{j=1}^r X_j$, and $conv\left(\cup_{j=1}^r X_j\right)$. Let X_1, \ldots, X_r , be nonempty subsets of \mathbb{R}^n . Derive formulas for the support functions for X_1 +

Solution.

Let $X = X_1 + \cdots + X_r$. We have for all $y \in R^n$,

$$
\sigma_X(y) = \sup_{x \in X_1 + \dots + X_r} x'y
$$

=
$$
\sup_{x_1 \in X_1, \dots, x_r \in X_r} (x_1 + \dots + x_r)'y
$$

=
$$
\sup_{x_1 \in X_1} x'_1 y + \dots + \sup_{x_r \in X_r} x'_r y
$$

=
$$
\sigma_{X_1}(y) + \dots + \sigma_{X_r}(y).
$$

Since X_j and $conv(X_j)$ have the same support function, it follows that

$$
\sigma_{X_1}(y)+\cdots+\sigma_{X_r}(y)
$$

is also the support function of

$$
conv(X_1) + \cdots + conv(X_r).
$$

Let also $X = \bigcup_{j=1}^{r} X_j$. We have

$$
\sigma_X(y) = \sup_{x \in X} y'x = \max_{j=1,\dots,r} \sup_{x \in X_j} y'x = \max_{j=1,\dots,r} \sigma_{X_j}(y).
$$

This is also the support function of $conv(\cup_{j=1}^{r} X_j)$.

Consider a function ϕ of two real variables x and z taking values in compact intervals X and Z, respectively. Assume that for each $z \in Z$, the function $\phi(\cdot, z)$ is minimized over X at a unique point denoted $\hat{x}(z)$. Similarly, assume that for each $x \in X$, the function $\phi(x, \cdot)$ is maximized over Z at a unique point denoted $\hat{z}(x)$. Assume further that the functions $\hat{x}(z)$ and $\hat{z}(x)$ are continuous over Z and X, respectively. Show that ϕ has a saddle point (x^*, z^*) . Use this to investigate the existence of saddle points of $\phi(x, z) = x^2 + z^2$ over $X = [0, 1]$ and $Z = [0, 1]$.

Solution.

We consider a function ϕ of two real variables x and z taking values in compact intervals X and Z, respectively. We assume that for each $z \in Z$, the function $\phi(\cdot, z)$ is minimized over X at a unique point denoted $\hat{x}(z)$, and for each $x \in X$, the function $\phi(x, \cdot)$ is maximized over Z at a unique point denoted $\hat{z}(x)$,

$$
\hat{x}(z) = \arg\min_{x \in X} \phi(x, z), \qquad \hat{z}(x) = \arg\max_{z \in Z} \phi(x, z).
$$

Consider the composite function $f: X \mapsto X$ given by

$$
f(x) = \hat{x}(\hat{z}(x)),
$$

which is a continuous function in view of the assumption that the functions $\hat{x}(z)$ and $\hat{z}(x)$ are continuous over Z and X, respectively. Assume that the compact interval X is given by $[a, b]$. We now show that the function f has a fixed point, i.e., there exists some $x^* \in [a, b]$ such that

$$
f(x^*) = x^*.
$$

Define the function $g: X \mapsto X$ by

$$
g(x) = f(x) - x.
$$

Assume that $f(a) > a$ and $f(b) < b$, since otherwise [in view of the fact that $f(a)$ and $f(b)$ lie in the range [a, b], we must have $f(a) = a$ and $f(b) = b$, and we are done. We have

$$
g(a) = f(a) - a > 0,
$$

$$
g(b) = f(b) - b < 0.
$$

Since g is a continuous function, the preceding relations imply that there exists some $x^* \in (a, b)$ such that $g(x^*) = 0$, i.e., $f(x^*) = x^*$. Hence, we have

$$
\hat{x}(\hat{z}(x^*)) = x^*.
$$

Denoting $\hat{z}(x^*)$ by z^* , we obtain

$$
x^* = \hat{x}(z^*), \qquad z^* = \hat{z}(x^*).
$$

By definition, a pair (\bar{x}, \bar{z}) is a saddle point if and only if

$$
\max_{z \in Z} \phi(\bar{x}, z) = \phi(\bar{x}, \bar{z}) = \min_{x \in X} \phi(x, \bar{z}),
$$

or equivalently, if $\bar{x} = \hat{x}(\bar{z})$ and $\bar{z} = \hat{z}(\bar{x})$. Therefore, we see that (x^*, z^*) is a saddle point of ϕ .

We now consider the function $\phi(x, z) = x^2 + z^2$ over $X = [0, 1]$ and $Z = [0, 1]$. For each $z \in [0, 1]$, the function $\phi(\cdot, z)$ is minimized over [0, 1] at a unique point $\hat{x}(z) = 0$, and for each $x \in [0, 1]$, the function $\phi(x, \cdot)$ is maximized over [0, 1] at a unique point $\hat{z}(x) = 1$. These two curves intersect at $(x^*, z^*) = (0, 1)$, which is the unique saddle point of ϕ .

In the context of Section 4.2.2, let $F(x, u) = f_1(x) + f_2(Ax + u)$, where A is an $m \times n$ matrix, and $f_1: \mathbf{R}^n \mapsto (-\infty, \infty]$ and $f_2: \mathbf{R}^m \mapsto (-\infty, \infty]$ are closed convex functions. Show that the dual function is

$$
q(\mu) = -f_1^*(A'\mu) - f_2^*(-\mu),
$$

where f_1^* and f_2^* are the conjugate functions of f_1 and f_2 , respectively. Note: This is the Fenchel duality framework discussed in Section 5.3.5.

Solution.

From Section 4.2.1, the dual function is

$$
q(\mu) = -p^*(-\mu),
$$

where p^* is the conjugate of the function

$$
p(u) = inf_{x \in R^n} F(x, u).
$$

The max crossing value is

$$
q^* = \sup_{\mu} \{-p^*(-\mu)\}.
$$

By using the change of variables $z = Ax + u$ in the following calculation, we have

$$
p^*(-\mu) = \sup_{u} \{-\mu'u - \inf_{x} \{f_1(x) + f_2(Ax + u)\}\}
$$

=
$$
\sup_{z,x} \{-\mu'(z - Ax) - f_1(x) - f_2(z)\}
$$

=
$$
f_1^*(A'\mu) + f_2^*(-\mu),
$$

where f_1^* and f_2^* are the conjugate functions of f_1 and f_2 , respectively. Thus,

$$
q(\mu) = -f_1^{\star}(A'\mu) - f_2^{\star}(-\mu).
$$

MIT OpenCourseWare <http://ocw.mit.edu>

6.253 Convex Analysis and Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: <http://ocw.mit.edu/terms>.