6.253: Convex Analysis and Optimization Homework 4

Prof. Dimitri P. Bertsekas

Spring 2010, M.I.T.

Problem 1

Let $f: \mathbf{R}^n \mapsto \mathbf{R}$ be the function

$$f(x) = \frac{1}{p} \sum_{i=1}^{n} |x_i|^p$$

where 1 < p. Show that the conjugate is

$$f^{\star}(y) = \frac{1}{q} \sum_{i=1}^{n} |y_i|^q$$

where q is defined by the relation

$$\frac{1}{p} + \frac{1}{q} = 1$$

Problem 2

(a) Show that if $f_1 : \mathbf{R}^n \mapsto (-\infty, \infty]$ and $f_2 : \mathbf{R}^n \mapsto (-\infty, \infty]$ are closed proper convex functions, with conjugates denoted by f_1^* and f_2^* , respectively, we have

$$f_1(x) \le f_2(x), \qquad \forall \ x \in \mathbf{R}^n,$$

if and only if

$$f_1^{\star}(y) \ge f_2^{\star}(y), \qquad \forall \ y \in \mathbf{R}^n.$$

(b) Show that if C_1 and C_2 are nonempty closed convex sets, we have

$$C_1 \subset C_2,$$

if and only if

$$\sigma_{C_1}(y) \le \sigma_{C_2}(y), \qquad \forall \ y \in \mathbf{R}^n$$

Construct an example showing that closedness of C_1 and C_2 is a necessary assumption.

Problem 3

Let X_1, \ldots, X_r , be nonempty subsets of \mathbf{R}^n . Derive formulas for the support functions for $X_1 + \cdots + X_r$, $conv(X_1) + \cdots + conv(X_r)$, $\cup_{j=1}^r X_j$, and $conv\left(\cup_{j=1}^r X_j\right)$.

Problem 4

Consider a function ϕ of two real variables x and z taking values in compact intervals X and Z, respectively. Assume that for each $z \in Z$, the function $\phi(\cdot, z)$ is minimized over X at a unique point denoted $\hat{x}(z)$. Similarly, assume that for each $x \in X$, the function $\phi(x, \cdot)$ is maximized over Z at a unique point denoted $\hat{z}(x)$. Assume further that the functions $\hat{x}(z)$ and $\hat{z}(x)$ are continuous over Z and X, respectively. Show that ϕ has a saddle point (x^*, z^*) . Use this to investigate the existence of saddle points of $\phi(x, z) = x^2 + z^2$ over X = [0, 1] and Z = [0, 1].

Problem 5

In the context of Section 4.2.2, let $F(x, u) = f_1(x) + f_2(Ax + u)$, where A is an $m \times n$ matrix, and $f_1 : \mathbf{R}^n \mapsto (-\infty, \infty]$ and $f_2 : \mathbf{R}^m \mapsto (-\infty, \infty]$ are closed convex functions. Show that the dual function is

$$q(\mu) = -f_1^{\star}(A'\mu) - f_2^{\star}(-\mu),$$

where f_1^* and f_2^* are the conjugate functions of f_1 and f_2 , respectively. Note: This is the Fenchel duality framework discussed in Section 5.3.5.

MIT OpenCourseWare http://ocw.mit.edu

6.253 Convex Analysis and Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.