6.253: Convex Analysis and Optimization Homework 2

Prof. Dimitri P. Bertsekas

Spring 2010, M.I.T.

Problem 1

(a) Let C be a nonempty convex cone. Show that $cl(C)$ and $ri(C)$ is also a convex cone. (b) Let $C = cone({x_1, \ldots, x_m})$. Show that

$$
ri(C) = \{\sum_{i=1}^{m} a_i x_i | a_i > 0, i = 1, ..., m\}.
$$

Solution.

(a) Let $x \in cl(C)$ and let α be a positive scalar. Then, there exists a sequence $\{x_k\} \in C$ such that $x_k \to x$, and since C is a cone, $\alpha x_k \in C$ for all k. Furthermore, $\alpha x_k \to \alpha x$, implying that $\alpha x \in cl(C)$. Hence, $cl(C)$ is a cone, and it also convex since the closure of a convex set is convex.

By Prop.1.3.2, the relative interior of a convex set is convex. To show that $rin(C)$ is a cone, let $x \in \text{rin}(C)$. Then, $x \in C$ and since C is a cone, $\alpha x \in C$ for all $\alpha > 0$. By the Line Segment Principle, all the points on the line segment connecting x and αx , except possibly αx , belong to rin(C). Since this is true for every $\alpha > 0$, it follows that $\alpha x \in \text{rin}(C)$ for all $\alpha > 0$, showing that $rin(C)$ is a cone.

(b) Consider the linear transformation A that maps $(\alpha_1, \ldots, \alpha_m) \in \mathbb{R}^m$ into $\sum_{i=1}^m \alpha_i x_i \in \mathbb{R}^n$. Note that C is the image of the nonempty convex set

$$
\{(\alpha_1,\ldots,\alpha_m) \mid \alpha_1 \geq 0,\ldots,\alpha_m \geq 0\}
$$

under A. Therefore, we have

$$
rin(C) = rin(A \cdot \{ (\alpha_1, ..., \alpha_m) \mid \alpha_1 \ge 0, ..., \alpha_m \ge 0 \})
$$

= $A \cdot rin(\{ (\alpha_1, ..., \alpha_m) \mid \alpha_1 \ge 0, ..., \alpha_m \ge 0 \})$
= $A \cdot \{ (\alpha_1, ..., \alpha_m) \mid \alpha_1 > 0, ..., \alpha_m > 0 \}$
= $\left\{ \sum_{i=1}^m \alpha_i x_i \mid \alpha_1 > 0, ..., \alpha_m > 0 \right\}.$

Let \mathcal{C}_1 and \mathcal{C}_2 be convex sets. Show that

$$
C_1 \cap ri(C_2) \neq \emptyset
$$
 if and only if $ri(C_1 \cap aff(C_2)) \cap ri(C_2) \neq \emptyset$.

Solution.

Let $x \in C_1 \cap \text{rin}(C_2)$ and $\bar{x} \in \text{rin}(C_1 \cap \text{aff}(C_2))$. Let L be the line segment connecting x and \bar{x} . Then L belongs to $C_1 \cap aff(C_2)$ since both of its endpoints belong to $C_1 \cap aff(C_2)$. Hence, by the Line Segment Principle, all points of L except possibly x, belong to $rin(C_1 \cap aff(C_2))$. On the other hand, by the definition of relative interior, all points of L that are sufficiently close to x belong to $rin(C_2)$, and these points, except possibly for x belong to $rin(C_1 \cap aff(C_2)) \cap rin(C_2)$. The other direction is obvious.

(a) Consider a vector x^{*} such that a given function $f: \mathbb{R}^n \to \mathbb{R}$ is convex over a sphere centered at x^* . Show that x^* is a local minimum of f if and only if it is a local minimum of f along every line passing through x^* [i.e., for all $d \in \mathbb{R}^n$, the function $g : \mathbb{R} \mapsto \mathbb{R}$, defined by $g(\alpha) = f(x^* + \alpha d)$, has $\alpha^* = 0$ as its local minimum].

(b) Consider the nonconvex function $f: \mathbb{R}^2 \mapsto \mathbb{R}$ given by

$$
f(x_1, x_2) = (x_2 - px_1^2)(x_2 - qx_1^2),
$$

where p and q are scalars with $0 < p < q$, and $x^* = (0, 0)$. Show that $f(y, my^2) < 0$ for $y \neq 0$ and m satisfying $p < m < q$, so x^* is not a local minimum of f even though it is a local minimum along every line passing through x^* .

Solution.

(a) If x^* is a local minimum of f, evidently it is also a local minimum of f along any line passing through x^* .

Conversely, let x^* be a local minimum of f along any line passing through x^* . Assume, to arrive at a contradiction, that x^{*} is not a local minimum of f and that we have $f(\bar{x}) < f(x^*)$ for some \bar{x} in the sphere centered at x^* within which f is assumed convex. Then, by convexity of f, for all $\alpha \in (0,1)$, we have

$$
f(\alpha x^* + (1 - \alpha)\bar{x}) \le \alpha f(x^*) + (1 - \alpha)f(\bar{x}) < f(x^*),
$$

so f decreases monotonically along the line segment connecting x^* and \bar{x} . This contradicts the hypothesis that x^* is a local minimum of f along any line passing through x^* .

(b) We first show that the function $q : \mathbf{R} \mapsto \mathbf{R}$ defined by $q(\alpha) = f(x^* + \alpha d)$ has a local minimum at $\alpha = 0$ for all $d \in \mathbb{R}^2$. We have

$$
g(\alpha) = f(x^* + \alpha d) = (\alpha d_2 - p\alpha^2 d_1^2)(\alpha d_2 - q\alpha^2 d_1^2) = \alpha^2 (d_2 - p\alpha d_1^2)(d_2 - q\alpha d_1^2).
$$

Also,

$$
g'(\alpha) = 2\alpha(d_2 - p\alpha d_1^2)(d_2 - q\alpha d_1^2) + \alpha^2(-pd_1^2)(d_2 - q\alpha d_1^2) + \alpha^2(d_2 - p\alpha d_1^2)(-qd_1^2).
$$

Thus $g'(0) = 0$. Furthermore,

$$
g''(\alpha) = 2(d_2 - p\alpha d_1^2)(d_2 - q\alpha d_1^2) + 2\alpha(-pd_1^2)(d_2 - q\alpha d_1^2)
$$

+ 2\alpha(d_2 - p\alpha d_1^2)(-qd_1^2) + 2\alpha(-pd_1^2)(d_2 - q\alpha d_1^2) + \alpha^2(-pd_1^2)(-qd_1^2)
+ 2\alpha(d_2 - p\alpha d_1^2)(-qd_1^2) + \alpha^2(-pd_1^2)(-qd_1^2).

Thus $g''(0) = 2d_2^2$, which is positive if $d_2 \neq 0$. If $d_2 = 0$, $g(\alpha) = pq\alpha^4 d_1^4$, which is clearly minimized at $\alpha = 0$. Therefore, (0,0) is a local minimum of f along every line that passes through (0,0).

We now show that if $p < m < q$, $f(y, my^2) < 0$ if $y \neq 0$ and that $f(y, my^2) = 0$ otherwise. Consider a point of the form (y, my^2) . We have $f(y, my^2) = y^4(m-p)(m-q)$. Clearly, $f(y, my^2) < 0$ if and only if $p < m < q$ and $y \neq 0$. In any ϵ -neighborhood of $(0, 0)$, there exists a $y \neq 0$ such that for some $m \in (p,q)$, (y, my^2) also belongs to the neighborhood. Since $f(0,0) = 0$, we see that $(0, 0)$ is not a local minimum.

(a) Consider the quadratic program

$$
\begin{array}{ll}\text{minimize} & 1/2 \ |x|^2 + c'x\\ \text{subject to} & Ax = 0 \end{array} \tag{1}
$$

where $c \in \mathbb{R}^n$ and A is an $m \times n$ matrix of rank m. Use the Projection Theorem to show that

$$
x^* = -(I - A'(AA')^{-1}A)c
$$

is the unique solution.

(b) Consider the more general quadratic program

$$
\begin{array}{ll}\text{minimize} & 1/2 \ (x - \bar{x})' Q(x - \bar{x}) + c'(x - \bar{x})\\ \text{subject to} & Ax = b \end{array} \tag{2}
$$

where c and A are as before, Q is a symmetric positive definite matrix, $b \in \mathbb{R}^m$, and \bar{x} is a vector in \mathbb{R}^n , which is feasible, i.e., satisfies $A\bar{x} = b$. Use the transformation $y = Q^{1/2}(x - \bar{x})$ to write this problem in the form of part (a) and show that the optimal solution is

$$
x^* = \bar{x} - Q^{-1}(c - A'\lambda),
$$

where λ is given by

$$
\lambda = (AQ^{-1}A')^{-1}AQ^{-1}c.
$$

(c) Apply the result of part (b) to the program

$$
\begin{array}{ll}\n\text{minimize} & 1/2 \ x'Qx + c'x \\
\text{subject to} & Ax = b\n\end{array} \tag{3}
$$

and show that the optimal solution is

$$
x^* = -Q^{-1}(c - A'\lambda - A'(AQ^{-1}A')^{-1}b).
$$

Solution.

(a) By adding the constant term $1/2||c||^2$ to the cost function, we can equivalently write this problem as

$$
\begin{aligned}\n\text{minimize} & \quad 1/2 \|c + x\|^2 \\
\text{subject to} & \quad Ax = 0\n\end{aligned}
$$

which is the problem of projecting the vector $-c$ on the subspace $X = \{x \mid Ax = 0\}$. By the optimality condition for projection, a vector x^* such that $Ax^* = 0$ is the unique projection if and only if

 $(c+x^*)'x=0, \quad \forall x \text{ with } Ax=0.$

It can be seen that the vector

$$
x^* = -(I - A'(AA')^{-1}A)c
$$

satisfies this condition and is thus the unique solution of the quadratic programming problem in (a). (The matrix AA' is invertible because A has rank m.)

(b) By introducing the transformation $y = Q^{1/2}(x - \bar{x})$, we can write the problem as

$$
\begin{aligned}\n\text{minimize} & 1/2 \|y\|^2 + \left(Q^{-1/2}c\right)' y \\
\text{subject to} & AQ^{-1/2}y = 0\n\end{aligned}
$$

Using part (a), we see that the solution of this problem is

$$
y^* = -\left(I - Q^{-1/2}A'\left(AQ^{-1}A'\right)^{-1}AQ^{-1/2}\right)Q^{-1/2}c
$$

and by passing to the x-coordinate system through the inverse transformation $x^* - \bar{x} = Q^{-1/2}y^*$, we obtain the optimal solution

$$
x^* = \bar{x} - Q^{-1}(c - A'\lambda),
$$

where λ is given by

$$
\lambda = \left(AQ^{-1}A'\right)^{-1}AQ^{-1}c.\tag{4}
$$

(c) The quadratic program in part (b) contains as a special case the program

$$
\begin{array}{ll}\text{minimize} & 1/2x'Qx + c'x\\ \text{subject to} & Ax = b \end{array}
$$

This special case is obtained when \bar{x} is given by

$$
\bar{x} = Q^{-1}A'(AQ^{-1}A')^{-1}b.\tag{5}
$$

Indeed \bar{x} as given above satisfies $A\bar{x} = b$ as required, and for all x with $Ax = b$, we have

$$
x'Q\bar{x} = x'A'(AQ^{-1}A')^{-1}b = b'(AQ^{-1}A')^{-1}b,
$$

which implies that for all x with $Ax = b$,

$$
1/2(x - \bar{x})'Q(x - \bar{x}) + c'(x - \bar{x}) = 1/2x'Qx + c'x + (1/2\bar{x}'Q\bar{x} - c'\bar{x} - b'(AQ^{-1}A')^{-1}b).
$$

The last term in parentheses on the right-hand side above is constant, thus establishing that the programs (2) and (3) have the same optimal solution when \bar{x} is given by Eq. 5. Therefore, we obtain the optimal solution of program (3):

$$
x^* = -Q^{-1} (c - A'\lambda - A'(AQ^{-1}A')^{-1}b),
$$

where λ is given by Eq. 4.

Let X be a closed convex subset of \mathbb{R}^n , and let $f : \mathbb{R}^n \to (-\infty, \infty]$ be a closed convex function such that $X \cap dom(f) \neq \emptyset$. Assume that f and X have no common nonzero direction of recession. Let X^* be the set of minima of f over X (which is nonempty and compact), and let $f^* = \inf_{x \in X} f(x)$. Show that:

(a) For every $\epsilon > 0$ there exists a $\delta > 0$ such that every vector $x \in X$ with $f(x) \leq f^* + \delta$ satisfies $\min_{x^* \in X^*} ||x - x^*|| \leq \epsilon.$

(b) If f is real-valued, for every $\delta > 0$ there exists an $\epsilon > 0$ such that every vector $x \in X$ with $\min_{x^* \in X^*} ||x - x^*|| \leq \epsilon$ satisfies $f(x) \leq f^* + \delta$.

(c) Every sequence $\{x_k\} \subset X$ satisfying $f(x_k) \to f^*$ is bounded and all its limit points belong to X^* .

Solution.

(a) Let $\epsilon > 0$ be given. Assume, to arrive at a contradiction, that for any sequence $\{\delta_k\}$ with $\delta_k \downarrow 0$, there exists a sequence $\{x_k\} \in X$ such that for all k

$$
f^* \le f(x_k) \le f^* + \delta_k, \qquad \min_{x^* \in X^*} \|x_k - x^*\| \ge \epsilon.
$$

It follows that, for all k, x_k belongs to the set $\{x \in X \mid f(x) \leq f^* + \delta_0\}$, which is compact since f and X are closed and have no common nonzero direction of recession. Therefore, the sequence ${x_k}$ has a limit point $\bar{x} \in X$, which using also the lower semicontinuity of f, satisfies

$$
f(\bar{x}) \le \liminf_{k \to \infty} f(x_k) = f^*, \qquad \|\bar{x} - x^*\| \ge \epsilon, \quad \forall \ x^* \in X^*,
$$

a contradiction.

(b) Let $\delta > 0$ be given. Assume, to arrive at a contradiction, that there exist sequences $\{x_k\} \subset X$, ${x_k[*]} \subset X[*]$, and ${ε_k}$ with ${ε_k} \downarrow 0$ such that

$$
f(x_k) > f^* + \delta, \qquad ||x_k - x_k^*|| \le \epsilon_k, \qquad \forall \ k = 0, 1, \dots
$$

(here x_k^* is the projection of x_k on X^*). Since X^* is compact, there is a subsequence $\{x_k^*\}_\mathcal{K}$ that converges to some $x^* \in X^*$. It follows that $\{x_k\}_{\mathcal{K}}$ also converges to x^* . Since f is real-valued, it is continuous, so we must have $f(x_k) \to f(x^*)$, a contradiction.

(c) Let \bar{x} be a limit point of the sequence $\{x_k\} \subset X$ satisfying $f(x_k) \to f^*$. By lower semicontinuity of f , we have that

$$
f(\bar{x}) \le \liminf_{k \to \infty} f(x_k) = f^*.
$$

Because $\{x_k\} \in X$ and X is closed, we have $\bar{x} \in X$, which in view of the preceding relation implies that $f(\bar{x}) = f^*$, i.e., $\bar{x} \in X^*$.

MIT OpenCourseWare <http://ocw.mit.edu>

6.253 Convex Analysis and Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: <http://ocw.mit.edu/terms>.