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6.253: Convex Analysis and Optimization 
Homework 2 

Prof. Dimitri P. Bertsekas 

Spring 2010, M.I.T. 

Problem 1 

(a) Let C be a nonempty convex cone. Show that cl(C) and ri(C) is also a convex cone. 
(b) Let C = cone({x1, . . . , xm}). Show that 

m

ri(C) = { aixi|ai > 0, i = 1, . . . ,m}. 
i=1 

Solution. 
(a) Let x ∈ cl(C) and let α be a positive scalar. Then, there exists a sequence {xk} ∈ C such 
that xk x, and since C is a cone, αxk ∈ C for all k. Furthermore, αxk αx, implying that → →
αx ∈ cl(C). Hence, cl(C) is a cone, and it also convex since the closure of a convex set is convex. 

By Prop.1.3.2, the relative interior of a convex set is convex. To show that rin(C) is a cone, 
let x ∈ rin(C). Then, x ∈ C and since C is a cone, αx ∈ C for all α > 0. By the Line Segment 
Principle, all the points on the line segment connecting x and αx, except possibly αx, belong to 
rin(C). Since this is true for every α > 0, it follows that αx ∈ rin(C) for all α > 0, showing that 
rin(C) is a cone. 

m(b) Consider the linear transformation A that maps (α1, . . . , αm) ∈ Rm into i=1 αixi ∈ Rn . 
Note that C is the image of the nonempty convex set 

{(α1, . . . , αm) | α1 ≥ 0, . . . , αm ≥ 0} 

under A. Therefore, we have 

rin(C) = rin(A · {(α1, . . . , αm) | α1 ≥ 0, . . . , αm ≥ 0}) 
= A · rin({(α1, . . . , αm) | α1 ≥ 0, . . . , αm ≥ 0}) 
= A · {(α1, . . . , αm) | α1 > 0, . . . , αm > 0} 

m

= αixi | α1 > 0, . . . , αm > 0 . 
i=1 
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Problem 2 

Let C1 and C2 be convex sets. Show that 

C1 ∩ ri(C2) � if and only if ri(C1 ∩ aff(C2)) ∩ ri(C2) =� ∅.= ∅ 

Solution.

Let x ∈ C1 ∩ rin(C2) and x̄ ∈ rin(C1 ∩ aff(C2)). Let L be the line segment connecting x and x̄.

Then L belongs to C1 ∩ aff(C2) since both of its endpoints belong to C1 ∩ aff(C2). Hence, by

the Line Segment Principle, all points of L except possibly x, belong to rin(C1 ∩ aff(C2)). On

the other hand, by the definition of relative interior, all points of L that are sufficiently close to x

belong to rin(C2), and these points, except possibly for x belong to rin(C1 ∩ aff(C2)) ∩ rin(C2).

The other direction is obvious.
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Problem 3 

(a) Consider a vector x∗ such that a given function f : Rn �→ R is convex over a sphere centered 
at x∗. Show that x∗ is a local minimum of f if and only if it is a local minimum of f along every 
line passing through x∗ [i.e., for all d ∈ Rn, the function g : R �→ R, defined by g(α) = f(x∗ + αd), 
has α∗ = 0 as its local minimum]. 
(b) Consider the nonconvex function f : R2 �→ R given by 

f(x1, x2) = (x2 − px1
2)(x2 − qx 1

2), 

where p and q are scalars with 0 < p < q, and x∗ = (0, 0). Show that f(y,my2) < 0 for y = 0 and �
m satisfying p < m < q, so x∗ is not a local minimum of f even though it is a local minimum along 
every line passing through x∗. 

Solution. 
(a) If x∗ is a local minimum of f , evidently it is also a local minimum of f along any line passing 
through x∗. 

Conversely, let x∗ be a local minimum of f along any line passing through x∗. Assume, to arrive 
at a contradiction, that x∗ is not a local minimum of f and that we have f(x̄) < f(x∗) for some 
x̄ in the sphere centered at x∗ within which f is assumed convex. Then, by convexity of f , for all 
α ∈ (0, 1), we have 

f(αx∗ + (1 − α)x̄) ≤ αf(x∗) + (1 − α)f(x̄) < f(x∗), 

so f decreases monotonically along the line segment connecting x∗ and x̄. This contradicts the 
hypothesis that x∗ is a local minimum of f along any line passing through x∗. 

(b) We first show that the function g : R �→ R defined by g(α) = f(x∗ + αd) has a local minimum 
at α = 0 for all d ∈ R2 . We have 

g(α) = f(x∗ + αd) = (αd2 − pα2d21)(αd2 − qα2d1
2) = α2(d2 − pαd21)(d2 − qαd1

2). 

Also, 

g�(α) = 2α(d2 − pαd21)(d2 − qαd1
2) + α2(−pd21)(d2 − qαd1

2) + α2(d2 − pαd21)(−qd21). 

Thus g�(0) = 0. Furthermore, 

g��(α) = 2(d2 − pαd21)(d2 − qαd1
2) + 2α(−pd21)(d2 − qαd1

2) 

+ 2α(d2 − pαd21)(−qd1
2) + 2α(−pd21)(d2 − qαd1

2) + α2(−pd21)(−qd21) 

+ 2α(d2 − pαd21)(−qd1
2) + α2(−pd21)(−qd1

2). 

Thus g��(0) = 2d22, which is positive if d2 = 0. If � d2 = 0, g(α) = pqα4d1
4, which is clearly minimized 

at α = 0. Therefore, (0, 0) is a local minimum of f along every line that passes through (0, 0). 
We now show that if p < m < q, f(y,my2) < 0 if y �= 0 and that f(y,my2) = 0 otherwise. 

Consider a point of the form (y,my2). We have f(y,my2) = y4(m−p)(m−q). Clearly, f(y,my2) < 0 
if and only if p < m < q and y =� 0. In any �−neighborhood of (0, 0), there exists a y =� 0 such 
that for some m ∈ (p, q), (y,my2) also belongs to the neighborhood. Since f(0, 0) = 0, we see that 
(0, 0) is not a local minimum. 
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Problem 4 

(a) Consider the quadratic program 

minimize 1/2 x|2 + c�x 
x 

|
(1) 

subject to Ax = 0 

where c ∈ Rn and A is an m × n matrix of rank m. Use the Projection Theorem to show that 

x∗ = −(I − A�(AA�)−1A)c 

is the unique solution. 
(b) Consider the more general quadratic program 

minimize 1/2 (x − x̄)�Q(x − x̄) + c�(x − x̄) 
x (2) 

subject to Ax = b 

where c and A are as before, Q is a symmetric positive definite matrix, b ∈ Rm, and x̄ is a vector 
in Rn, which is feasible, i.e., satisfies Ax̄ = b. Use the transformation y = Q1/2(x − x̄) to write this 
problem in the form of part (a) and show that the optimal solution is 

x∗ = x̄− Q−1(c − A�λ), 

where λ is given by 
λ = (AQ−1A�)−1AQ−1 c. 

(c) Apply the result of part (b) to the program 

minimize 1/2 x�Qx + c�x) 
x (3) 

subject to Ax = b 

and show that the optimal solution is 

x∗ = −Q−1(c − A�λ − A�(AQ−1A�)−1b). 

Solution. 
(a) By adding the constant term 1/2�c�2 to the cost function, we can equivalently write this problem 
as 

minimize 1/2�c + x�2 
x 

subject to Ax = 0 

which is the problem of projecting the vector −c on the subspace X = {x | Ax = 0}. By the 
optimality condition for projection, a vector x∗ such that Ax∗ = 0 is the unique projection if and 
only if 

(c + x∗)�x = 0, ∀ x with Ax = 0. 

It can be seen that the vector 
x∗ = −(I − A�(AA�)−1A)c 

satisfies this condition and is thus the unique solution of the quadratic programming problem in 
(a). (The matrix AA� is invertible because A has rank m.) 
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(b) By introducing the transformation y = Q1/2(x − x̄), we can write the problem as 

minimize 1/2�y�2 + Q−1/2 c 
� 
y 

y 

subject to AQ−1/2 y = 0


Using part (a), we see that the solution of this problem is


y∗ = − I − Q−1/2A� AQ−1A� −1 
AQ−1/2 Q−1/2 c 

and by passing to the x-coordinate system through the inverse transformation x∗ − x̄ = Q−1/2y∗, 
we obtain the optimal solution 

x∗ = x̄− Q−1(c − A�λ), 

where λ is given by 
λ = AQ−1A� −1 

AQ−1 c. (4) 

(c) The quadratic program in part (b) contains as a special case the program 

minimize 1/2x�Qx + c�x 
x 

subject to Ax = b 

This special case is obtained when x̄ is given by 

x̄ = Q−1A�(AQ−1A�)−1b. (5) 

Indeed x̄ as given above satisfies Ax̄ = b as required, and for all x with Ax = b, we have 

x�Qx̄ = x�A�(AQ−1A�)−1b = b�(AQ−1A�)−1b, 

which implies that for all x with Ax = b, 

1/2(x − x̄)�Q(x − x̄) + c�(x − x̄) = 1/2x�Qx + c�x + (1/2x̄�Qx̄− c�x̄− b�(AQ−1A�)−1b). 

The last term in parentheses on the right-hand side above is constant, thus establishing that the 
programs (2) and (3) have the same optimal solution when x̄ is given by Eq. 5. Therefore, we 
obtain the optimal solution of program (3): 

x∗ = −Q−1 c − A�λ − A�(AQ−1A�)−1b , 

where λ is given by Eq. 4. 

5




Problem 5 

Let X be a closed convex subset of Rn, and let f : Rn �→ (−∞, ∞] be a closed convex function such 
that X ∩ dom(f) =� ∅. Assume that f and X have no common nonzero direction of recession. Let 
X∗ be the set of minima of f over X (which is nonempty and compact), and let f∗ = infx∈X f(x). 
Show that: 
(a) For every � > 0 there exists a δ > 0 such that every vector x ∈ X with f(x) ≤ f∗ + δ satisfies 
minx∗∈X∗ �x − x∗� ≤ �. 
(b) If f is real-valued, for every δ > 0 there exists an � > 0 such that every vector x ∈ X with 
minx∗∈X∗ �x − x∗� ≤ � satisfies f(x) ≤ f∗ + δ. 
(c) Every sequence {xk} ⊂ X satisfying f(xk) f∗ is bounded and all its limit points belong to X∗.→ 

Solution. 
(a) Let � > 0 be given. Assume, to arrive at a contradiction, that for any sequence {δk} with δk ↓ 0, 
there exists a sequence {xk} ∈ X such that for all k 

f∗ ≤ f(xk) ≤ f∗ + δk, min 
x∗∈X∗ 

�xk − x∗� ≥ �. 

It follows that, for all k, xk belongs to the set {x ∈ X | f(x) ≤ f∗ + δ0}, which is compact since 
f and X are closed and have no common nonzero direction of recession. Therefore, the sequence 
{xk} has a limit point x̄ ∈ X, which using also the lower semicontinuity of f , satisfies 

f(x̄) ≤ lim inf f(xk) = f∗, �x̄− x∗� ≥ �, ∀ x∗ ∈ X∗, 
k→∞ 

a contradiction. 

(b) Let δ > 0 be given. Assume, to arrive at a contradiction, that there exist sequences {xk} ⊂ X, 
{x∗ 

k} ⊂ X∗, and {�k} with �k ↓ 0 such that 

f(xk) > f∗ + δ, �xk − x∗ 
k� ≤ �k, ∀ k = 0, 1, . . . 

(here x∗ is the projection of xk on X∗). Since X∗ is compact, there is a subsequence {x∗ 
k}K thatk 

converges to some x∗ ∈ X∗. It follows that {xk}K also converges to x∗. Since f is real-valued, it is 
continuous, so we must have f(xk) f(x∗), a contradiction. → 

(c) Let x̄ be a limit point of the sequence {xk} ⊂ X satisfying f(xk) f∗. By lower semicontinuity →
of f , we have that 

f(x̄) ≤ lim inf f(xk) = f∗. 
k→∞ 

Because {xk} ∈ X and X is closed, we have x̄ ∈ X, which in view of the preceding relation implies 
that f(x̄) = f∗, i.e., x̄ ∈ X∗. 
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