
MIT OpenCourseWare
http://ocw.mit.edu

6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.047/6.878 Fall 2008 Recitation 3 Notes

Pouya Kheradpour

September 19, 2008

1 Practical issues of machine learning

There are many practical issues to deal with when performing machine learning. This is especially true in
computational biology because the data sets are so complex that you have to be very careful that your results are
meaningful.

1.1 Overfitting

1. In lecture we saw the example of having many clusters leading to a higher probability of the data.

2. This is an extremely, generally unavoidable problem with machine learning – more parameters leads to better
training performance.

3. Using more parameters/features generally leads to more overfitting.

(a) Always consider how much data you have and if it is enough to learn all the parameters your model
has. If you have more features, it may be more likely that the classifier finds something that separates
the data just by chance.

(b) The more data you have, the more parameters may be appropriate.	 We will see more examples of this
when we are learning about HMMs.

(c) Consider Naive Bayes; what if certain features are very rarely seen?	 The counts may not be high
enough to properly estimate that parameter. In cases like this, pseudo-counts can be useful.

4. Overfitting also makes it difficult to draw conclusions from the parameters of a learned model.	 Better to
use specific statistical tests.

1.2 Cross-validation

1. In lecture,	 machine learning is presented as having a training set and a test set... but what if we just
have one set of data and we want to estimate performance? Remember, we can’t use training performance
because of overfitting.

2. We can use cross validation: partition the data set into multiple sets.	 Train on all but one set and then
test on the other; repeat for all sets to get an overall estimate of performance.

3. Some potential caveats:

(a) The models are still just as overfit (sometimes more so because you have fewer training samples) – you
can’t necessarily draw any conclusions from the parameters and the training performance will almost
always exceed the test performance.

(b) You have to be careful that you don’t have any training examples that are not independent from the
test samples. For example, recently duplicated genes may have many features that are similar only
due to their recent homology and not due to their belonging to the same class. To avoid misleading
performance due to overfitting, these types of samples should be placed in the same cross-validation
set (or all but one should be thrown out all together).

(c) There may be some loss in performance just because you have fewer training samples – using leave-
one-out cross-validation can largely solve this problem.

1

6.047/6.878 Fall 2008	 Recitation 3

(d) If your model has some parameter you must supply (e.g.	 the SVM’s kernel), you can overfit that if
you simply use cross-validation in order to pick the best one. You should break each training set into
a training and validation set to optimize that parameter and then apply it to the test set only once in
the end. Note: you can’t just use training performance because that will often always increase as you
increase a specific parameter.

4. You have to be very careful to never “break” the cross-validation.	 Never let your learning procedure use
the labels of the test data at any time!

2 Support vector machines

Support vector machines (SVMs) were discussed briefly in lecture. I will briefly go through the major concepts.
See wikipedia and/or the lecture notes for more details. There are many other machine learning techniques (take
6.867)!

1. SVMs are used to classify vectors in multi-dimensional space.	 This is very, very common problem in machine
learning. Sometimes even when your features are not continuous or even numbers, you can still make them
fit into something an SVM will classify.

2. Their main property is that try attempt to find a separator that maximizes the margin between the positive
and negative samples (which ends up being 2).||w||

3. Briefly, this is done by choosing w and b to minimize ||w||, subject to ci(w xi − b) ≥ 1, for all 1 ≥ i ≥ n·
where the xi’s are the points each with class ci ∈ {−1, 1}. ||w

b
|| indicates the distance of the hyperplane

from the origin.

4. Minimizing ||w|| is equivalent to minimizing 12 ||w||2, but the latter is easier because quadratic programming
can be applied.

5. This makes them somewhat robust against overfitting.

6. Extensions have been made to allow mislabeled points.

7. In order find this maximal separator, they rely only on dot products between samples.	 Because of this, we
can easily run SVMs in higher dimensional spaces without having to map the data points into the higher
dimensional space by computing a simpler formula for the dot products in the higher space.

8. There are a number of high-quality implementations for SVMs (e.g. SVMlight) that you can use off-the-shelf
for many problems.

2

