
MIT OpenCourseWare 
http://ocw.mit.edu 


6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution
Fall 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


6.047/6.878 Lecture 22: Metabolic Modeling 2 

November 20, 2008 

1 Review 

In the last lecture, we discussed how to use linear algebra to model metabolic networks with flux-balance analysis 
(FBA), which depends only on the stoichiometry of the reactions, not the kinetics. The metabolic network is 
represented as an n × m matrix M whose columns are the m reactions occurring in the network and whose rows are 
the n products and reactants of these reactions. The entry M(i, j) represents the relative amount of metabolite i 
consumed or produced by reaction j. A positive value indicates production; a negative value indicates consumption. 
The nullspace of this matrix consists of all the m × 1 reaction flux vectors that are possible given that the metabolic 
system is in steady state; i.e. all the sets of fluxes that do not change the metabolite concentrations. The nullspace 
ensures that the system is in steady state, but it there are also additional constraints in biological systems: fluxes 
cannot be infinite, and each reaction can only travel in the forward direction (in cases where the backward reaction 
is also biologically possible, it is included as a separate column in the matrix). After bounding the fluxes and 
constraining the directions of the reactions, the resulting space of possible flux vectors is called the constrained flux-
balance cone. The edges of the cone are known as its extreme pathways. By choosing an objective function—some 
linear combination of the fluxes—to maximize, we can calculate the optimal values for the fluxes using linear 
programming and the simplex algorithm. For example, the objective function may be a weighted sum of all the 
metabolite fluxes that represents the overall growth rate of the cell (growth objective). Alternatively, we can 
maximize use of one particular product by find the m × 1 flux vector that is in the flux-balance cone and has the 
largest negative value of that product. 

At the end of the last lecture, we also discussed knockout phenotype predictions, a classic application of metabolic 
modeling. Experimental biologists often gather information about the function of a protein by generating transgenic 
organisms in which the gene encoding that protein has been disrupted, or knocked out. We can simulate in silico the 
effect of knocking out a particular enzyme on metabolism by assuming that the reaction catalyzed by that enzyme 
does not occur at all in the knockout: zeroing out the jth column of M effectively removes the jth reaction from the 
network. What used to be an optimal solution may now lie outside of the constrained flux-balance cone and thus no 
longer be feasible in the absence of the jth reaction. We can determine the new constrained flux-balance cone and 
calculate the new optimum set of fluxes to maximize our objective function, predicting the effect of the knockout on 
metabolism. 

2 Knockout Phenotype Prediction in Eukaryotes 
(Forester et al, 2003; Famili et al, 2003) 

The last lecture gave an example of using knockout phenotype prediction to predict metabolic changes in response 
to knocking out enzymes in E. coli, a prokaryote. Eukaryotic cells, including animal cells, have more complex 
organization and more complex gene regulation and gene expression pathways. In this lecture, a recent attempt to 
perform similar knockout phenotype prediction in yeast, a eukaryote, was presented (Forster et al, 2003 and Famili 
et al, 2003). The authors predicted whether a variety of enzyme knockouts would be able to grow under a few 
different environmental conditions and compared the predictions to experimental results. They achieved 81.5% 
agreement between their predictions and experiment, but looking at the data more closely reveals that all of the 
discrepancies were false positives, in which the yeast were predicted to grow but did not. In fact, the model 
predicted that almost every knockout would grow. While not bad, these results were not as compelling as those for 
the prokaryotic case, highlighting the need to incorporate the ability of cells to regulate gene expression in response 
to environmental and metabolic changes into flux-balance analysis of eukaryotes. 



3 Overview of Today’s Material: Extensions to FBA 

Today we discuss a number of extensions to flux-balance analysis that provide additional predictive power. First, 
we demonstrate the ability of FBA to give quantitative predictions about growth rate and reaction fluxes given 
different environmental conditions. We then describe how to use FBA to predict time-dependent changes in growth 
rates and metabolite concentrations using quasi steady state modeling. Next, we discuss two approaches for taking 
gene expression changes into account in the FBA model: by building the rules of gene regulation into a Boolean 
network or by using available expression data from microarray experiments to constrain the flux-balance cone. 
Finally, we provide an example of using expression data to predict the state of the environment from the metabolic 
state, rather than the other way around. 

4 Quantitative Flux Prediction 
(Edwards, Ibarra, & Palsson, 2001) 

Since FBA maximizes an objective function, resulting in a specific value for this function, we should in theory be 
able to extract quantitative information from the model. An early example of this was done by Edwards, Ibarra, and 
Palsson (2001), who predicted the growth rate of E. coli in culture given a range of fixed uptake rates of oxygen and 
two carbon sources (acetate and succinate), which they could control in a batch reactor. They assumed that E. coli 

cells adjust their metabolism to maximize growth (using a growth objective function) under given environmental 
conditions and used FBA to model the metabolic pathways in the bacterium. The controlled uptake rates fixed the 
values of the oxygen and acetate/succinate input fluxes into the network, but the other fluxes were calculated to 
maximize the value of the growth objective. The authors’ quantitative growth rate predictions under the different 
conditions matched very closely to the experimentally observed growth rates, implying that E. coli do have a 
metabolic network that is designed to maximize growth. The agreement between the predictions and experimental 
results is very impressive for a model that does not include any kinetic information, only stoichiometry. Prof. 
Galagan cautioned, however, that it is often difficult to know what “good” agreement is, because we don’t know the 
significance of the size of the residuals. 

5 Quasi Steady State Modeling 
(Varma & Palsson, 1994) 

The previous example used FBA to make quantitative growth predictions under specific environmental conditions 
(point predictions), but is it also possible to predict time-dependent changes in response to varying environmental or 
cellular conditions? Varma and Palsson (1994) demonstrate the use of FBA to predict time-dependent changes in E. 

coli metabolism. Their quasi steady state model is based on the idea that time-dependent changes in fluxes can be 
modeled as transitions through individual time points that are themselves in steady state. In other words, quasi 
steady state modeling divides time into differential slices of size Δt and assumes that the state of the system is 
constant within each interval. This assumption requires that metabolism can adjust to changes more rapidly than the 
changes occur. To model a time profile of the system under the quasi steady state assumption, we use FBA to 
calculate the fluxes within each time interval. Because fluxes represent the derivatives of the metabolite 
concentrations, we can assume that the derivatives are constant over each Δt and integrate to find the starting 
metabolite concentrations at the next time interval. So quasi steady state modeling is an iterative process in which 
we calculate the optimal fluxes and growth rate for the system at one time point, and then use those optimal fluxes to 
derive the initial environmental conditions for the next time point. 

Varma and Palsson (1994) first predicted growth rate, oxygen uptake, and acetate secretion for specified glucose 
uptake rates, using quantitative flux prediction as in the previous example. Their FBA model incorporated 
experimentally-determined values of maximum oxygen utilization rate, maximum aerobic glucose utilization rate, 
maximum anaerobic glucose utilization rate, and growth- and non-growth-associated maintenance requirements. 
Their predictions were again found to be very similar to experimental results. 



The researchers then used quasi steady state modeling to predict the time-dependent profiles of cell growth and 
metabolite concentrations in batch cultures of E. coli that had either a limited initial supply of glucose or a slow 
continuous glucose supply. They predicted available glucose concentration and acetate secretion over time, and 
their predictions again matched very well with experimental measurements: their model anticipated both the smooth 
behavior (e.g. decreasing glucose concentration, increasing acetate secretion over time) and also sudden transitions 
(e.g. the sudden decrease in acetate secretion when available glucose concentration reached zero). Thus, in E. coli, 
quasi steady state predictions are impressively accurate even with a model that does not account for any changes in 
enzyme expression levels over time. However, this model would not be adequate to describe behavior that is known 
to involve gene regulation; for example, if the cells had been grown on half-glucose/half-lactose medium, the model 
would not have been able to predict the switch in consumption from one carbon source to another that occurs 
experimentally when E. coli activates alternate carbon utilization pathways only in the absence of glucose. 

6 Incorporating Regulation into Metabolic Models 

Metabolic pathways are regulated at many different levels: the metabolite itself can be regulated, while 
transcriptional, translational, and post-translational regulation control the availability of active enzyme. These 
regulatory processes have been studied extensively by biologists, and many of the discrepancies between FBA 
predictions and experimental results can be explained by using existing knowledge about gene regulation. As stated 
in Covert et al (2001): 

“...FBA leads to incorrect predictions in situations where regulatory effects are a dominant influence on the behavior 
of the organism. ... Thus, there is a need to include regulatory events within FBA to broaden its scope and predictive 
capabilities.” 

Incorporating known regulatory information into metabolic models in order to improve prediction is an important 
area of current research. 

6.1 Regulation as Boolean Logic 
(Covert, Schilling, & Palsson, 2001) 

The first attempt to include regulation in an FBA model was published by Covert, Schilling, and Palsson in 2001. 
The researchers incorporated a set of known transcriptional regulatory events into their analysis of a metabolic 
regulatory network by approximating gene regulation as a Boolean process. A reaction does or does not occur 
depending on the presence of both the enzyme and the substrate(s): if either the enzyme that catalyzes the reaction 
(E) is not expressed or a substrate (A) is not available, the reaction flux will be zero: 

rxn = IF (A) AND (E) 

Similar Boolean logic can be used to determine whether enzymes will be expressed or not, depending on the 
currently expressed genes and the current environmental conditions. For example, transcription of the enzyme (E) 
might only occur if the appropriate gene (G) is available for transcription and if a repressor (B) is not present: 

trans = IF (G) AND NOT (B) 

The authors used these principles to design a Boolean network that inputs the current state of all relevant genes (on 
or off) and the current state of all metabolites (present or not present), and outputs a binary vector containing the 
new state of each of these genes and metabolites. The rules of the Boolean network were constructed based on 
experimentally-determined cellular regulatory events. Treating reactions and enzyme/metabolite concentrations as 
binary variables does not allow for quantitative analysis, but this method can predict qualitative shifts in metabolic 
fluxes when merged with FBA. Whenever an enzyme is absent, the corresponding column is removed from the 
FBA reaction matrix, as was described above for knockout phenotype prediction. This leads to an iterative process: 
1) given the initial states of all genes and metabolites, calculate the new states using the Boolean network; 2) 



perform FBA with appropriate columns deleted from the matrix, based on the states of the enzymes, to determine 
the new metabolite concentrations; 3) repeat the Boolean network calculation with the new metabolite 
concentrations; etc. 

An application of this method from the study by Covert et al was to simulate diauxic shift, a shift from metabolizing 
a preferred carbon source to another carbon source when the preferred source is not available. The modeled process 
includes two gene products, a regulatory protein RPc1, which senses (is activated by) Carbon 1, and a transport 
protein Tc2, which transports Carbon 2. If RPc1 is activated by Carbon 1, Tc2 will not be transcribed, since the cell 
preferentially uses Carbon 1 as a carbon source. If Carbon 1 is not available, the cell will switch to metabolic 
pathways based on Carbon 2 and will turn on expression of Tc2. This information can be represented by the 
Booleans: 

RPc1 = IF (Carbon1) 
tTc2 = IF NOT (RPc1) 

Covert et al found that this approach gave predictions about metabolism that matched results from experimentally-
induced diauxic shift. 

So far we have discussed using this combined FBA-Boolean network approach to model regulation at the 
transcriptional/translational level, and it will also work for other types of regulation. The main limitation is for slow 
forms of regulation, since this method assumes that regulatory steps are completed within a single time interval 
(because the Boolean calculation is done at each FBA time step and does not take into account previous states of the 
system). This is fine for any forms of regulation that act at least as fast as transcription/translation; for example, 
phosphorylation of enzymes (an enzyme activation process) is very fast and can be modeled by including the 
presence of a phosphorylase enzyme in the Boolean network. However, regulation that occurs over longer time 
scales, such as sequestration of mRNA, is not taken into account by this model. This approach also has a 
fundamental problem in that it does not allow actual experimental measurements of gene expression levels to be 
inputted at relevant time points. Given recent experimental advances, it has become very easy to measure the 
expression of large numbers of genes using microarrays, and we no longer need to depend on rules to calculate gene 
expression levels over time. 

6.2 Modeling Metabolism with Expression Data 

As discussed previously in lecture, it is now possible to measure mRNA levels for thousands of genes at a time by 
microarray experiments. Historically, data from microarray experiments have been analyzed by clustering, and 
unknown genes are hypothesized to function similarly to known genes within the same cluster. This analysis can be 
faulty, however, as genes with similar functions may not always cluster together. Incorporating microarray 
expression data into FBA provides another way of interpreting the data. 

The key to this approach is to determine how the mRNA expression level correlates with the flux through a reaction 
catalyzed by the encoded enzyme. For the reaction: 

with substrate S, product P, and enzyme E, the concentration of the enzyme directly determines the flux only if there 
is an excess of substrate, i.e. the reaction is enzyme-limited. By Michaelis-Menten kinetics, the flux is given by: 

where Km is the concentration of substrate S that gives a flux equal to half the maximum flux, vmax, and [Etot] is the 
concentration of available enzyme. The specific flux depends both on the concentration of enzyme and the 
concentration of substrate. As a simple example of the importance of substrate concentration in reaction systems, 
consider a system of two enzyme-catalyzed reactions: 



Even though enzyme E2 is present, the flux through the second reaction is zero because no S2 can be produced in the 
absence of E1. So the enzyme concentration cannot simply be taken as proportional to the reaction flux in our model 
of the system. However, the enzyme concentration can be treated as a constraint on the maximum possible flux, 
given that [S] also has a reasonable physiological limit. 

The next step, then, is to relate the mRNA expression level to the enzyme concentration. This is more difficult, 
since cells have a number of regulatory mechanisms to control protein concentrations independently of mRNA 
concentrations. For example, translated proteins may require an additional activation step (e.g. phosphorylation); 
each mRNA molecule may be translated into a variable number of proteins before it is degraded (e.g. by antisense 
RNAs); the rate of translation from mRNA into protein may be slower than the time intervals considered in each 
step of FBA; and the protein degradation rate may also be slow. Despite these complications, the mRNA expression 
levels from microarray experiments are usually taken as upper bounds on the possible enzyme concentrations at 
each measured time point. Given the above relationship between enzyme concentration and flux, this means that the 
mRNA expression levels are also upper bounds on the maximum possible fluxes through the reactions catalyzed by 
their encoded proteins. The validity of this assumption is still being debated, but it has already performed well in 
FBA analyses and is consistent with recent evidence that cells do control metabolic enzyme levels primarily by 
adjusting mRNA levels (Prof. Galagan referred students to the lecture notes from last year, when he discussed a 
study by Zaslaver et al (2004) that found that genes required in an amino acid biosynthesis pathway are transcribed 
sequentially as needed). This is a particularly useful assumption for including microarray expression data in FBA, 
since FBA makes use of maximum flux values to constrain the flux-balance cone. 

Unpublished data from Caroline Colijn, Aaron Brandes, and Jeremy Zucker provide an example of using mRNA 
expression levels as constraints on maximum flux values. Microarray data from E. coli growing on two different 
carbon sources, glucose and acetate, show significant differences in gene expression between the two conditions. 
For example, the glyoxylate shunt is a pathway that normally has very low flux but that is required when using 
carbon sources with only 2 carbons instead of 6. During growth on acetate, expression of the glyoxylate shunt 
enzymes was upregulated 20-fold and the flux through this pathway significantly increased in experimental 
measurements. Using the expression levels as flux constraints in an FBA model resulted in calculated flux values 
that predicted a similar increase in the glyoxylate shunt pathway under acetate growth conditions. 

Prof. Galagan’s group has been using this combined FBA and microarray data approach to predict the state of 
metabolic pathways in the tuberculosis (TB) bacterium under various drug treatments. For example, several TB 
drugs target the biosynthesis of mycolic acid, a cell wall constituent that is not present in animal cells. In 2005, 
Raman et al published an FBA model of mycolic acid biosynthesis, consisting of 197 metabolites and 219 reactions. 
Microarray expression data is also available for thousands of TB genes in the presence of 75 different drugs, drug 
combinations, and growth conditions (published in Boshoff et al, 2004). Prof. Galagan’s group combined these 
expression data with the published FBA model to predict the effect of each tested condition on mycolic acid 
synthesis. Their approach was to use mycolic acid production as the objective function in the FBA algorithm, in 
order to calculate the maximum possible amount of mycolic acid that the TB bacterium could produce under each 
condition. The experimentally-determined mRNA expression levels were used to constrain the maximum reaction 
fluxes, and the FBA results from each experimental condition were compared to the results from a control condition 
in the absence of drug to determine the change in mycolic acid synthesis attributable to the presence of each drug. 
The group then did additional calculations in order to characterize the significance and specificity of their results. 
To determine the significance of the size of the calculated changes in mycolic acid synthesis, they repeated the same 
analysis on each of the different control conditions (different growth conditions but all in the absence of drugs) to 
see how mycolic acid synthesis varies as a result of normal variations in environmental conditions. The dotted lines 
in the “Significance and Specificity” figure from lecture represent the 95% confidence interval for normal mycolic 
acid variation that is not due to the effect of drugs. In addition, to determine whether observed effects were specific 
to the 30 genes in the mycolic acid biosynthesis pathway versus whether the drugs affected cellular metabolism as a 
whole, the group repeated the calculations using the expression levels of other sets of 30 randomly-selected genes 
from the microarray experiment. If the same effect was observed for randomly-selected genes as for the mycolic 
acid pathway genes, then the drug must not be specific for mycolic acid biosynthesis. The blue 95% error bars in 



the “Significance and Specificity” figure from lecture represent the specificity of the effect for mycolic acid 
biosynthesis. 

The results of this approach were encouraging. Of the 7 known mycolic acid inhibitors, 6 were correctly identified 
as inhibitors by the model. Their specificity was also predicted correctly (for example, PA-824 was correctly 
predicted as a non-specific inhibitor). Interestingly, the 7th known inhibitor, triclosan, was also identified by the 
model but was predicted to be an enhancer rather than an inhibitor, suggesting that additional studies of this drug 
may reveal multiple effects under different conditions. 4 novel inhibitors and 3 novel enhancers of mycolic acid 
synthesis were also predicted by the model. 

One could argue that predictions about the effects of these drugs on mycolic acid biosynthesis could have been made 
on the basis of the expression data alone, without using the FBA model. However, there are three reasons why the 
combined FBA approach is preferable. First, the known inhibitors of mycolic acid biosynthesis have different 
mechanisms of action and don’t cluster together when the microarray data are clustered by traditional methods, 
suggesting that expression data alone would not give accurate predictions about their functions. FBA also has the 
advantage of not requiring a labeled training set; in this case, a training set for enhancers of mycolic acid 
biosynthesis was not available, since there are no known enhancers. Finally, the FBA model contains additional 
information and can answer more questions than clustering analysis; in this case, for example, it provided 
information on the specificity and strength of each drug’s effect on mycolic acid biosynthesis. 

7 Predicting Nutrient Source 

The examples above have used modeling to predict the metabolic state of an organism given known environmental 
conditions. But now that we can obtain information about the metabolic state of an organism from microarray 
expression data, we can imagine the converse: using modeling to predict the state of the environment given a known 
metabolic state. Such predictions could be useful for determining the nutrient requirements of an organism with an 
unknown natural environment, or for determining how an organism changes its environment (TB, for example, is 
able to live within the environment of a macrophage phagolysosome, presumably by altering the environmental 
conditions in the phagolysosome and preventing its maturation). As before, the measured expression levels provide 
constraints on the reaction fluxes, altering the shape of the flux-balance cone (now the expression-constrained flux-
balance cone). FBA can be used to determine the optimal set of fluxes that maximize growth within these 
expression constraints, and this set of fluxes can be compared to experimentally-determined optimal growth patterns 
under each environmental condition of interest. The difference between the calculated state of the organism and the 
optimal state under each condition is a measure of how sub-optimal the current metabolic state of the organism 
would be if it were in fact growing under that condition. 

Unpublished data from Desmond Lun and Aaron Brandes provide an example of this approach. They used FBA to 
predict which nutrient source E. coli cultures were growing on, based on gene expression data. They compared the 
known optimal fluxes (the optimal point in flux space) for each nutrient condition to the allowed optimal flux values 
within the expression-constrained flux-balance cone. Those nutrient conditions with optimal fluxes that remained 
within (or closest to) the expression-constrained cone were the most likely possibilities for the actual environment of 
the culture. Results of the experiment are shown in the lecture slides, where each square in the results matrices is 
colored based on the distance between the optimal fluxes for that nutrient condition and the calculated optimal 
fluxes based on the expression data. Red values indicate large distances from the expression-constrained flux cone 
and blue values indicate short distances from the cone. In the glucose-acetate experiments, for example, the results 
of the experiment on the left indicate that low acetate conditions are the most likely (and glucose was the nutrient in 
the culture) and the results of the experiment on the right indicate that low glucose/medium acetate conditions are 
the most likely (and acetate was the nutrient in the culture). When 6 possible nutrients were considered, the correct 
one was always accurately predicted by the model, and when 18 possible nutrients were considered, the correct one 
was always one of the top 4 ranking predictions. These results suggest that it is possible to use expression data and 
FBA modeling to predict environmental conditions from information about the metabolic state of an organism. 



8 Summary and Additional Approaches 

This lecture has taken us from simple flux-balance analysis, which gave steady-state reaction flux predictions based 
on the stochiometry of metabolic reactions, through improvements that allow quantitative and time-dependent 
predictions, to incorporation of gene expression changes that now allow modeling of complex cellular behaviors 
such as carbon source switching. This is an active area of research and many other improvements are possible. For 
example, Palsson’s group has recently incorporated microarray data into the Boolean model of gene regulation by 
turning genes off in the Boolean network whenever their measured expression levels fall below some threshold 
value. Another group recently used an FBA approach that maximizes the number of reactions in the metabolic 
network whose fluxes match the measured expression levels of the corresponding enzymes; in other words, the 
number of reactions whose enzymes are not expressed and have zero flux plus the number of reactions whose 
enzymes are expressed and have significant flux. The class suggested that a new approach to identifying drug 
targets in a pathogen could be to calculate in silico which enzyme and reaction, if knocked out, would have the 
largest negative effect on flux through a pathway of interest in a pathogen. The converse of this is the synthetic 
biology approach: trying to add reactions into a network (first in silico, by searching the space of possible models) to 
see which additional reaction would most improve flux through a pathway of interest. 
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