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Lecture 21: Introduction to Steady State

Metabolic Modeling


November 18, 2008 

1 Introduction 

Metabolic modeling allows us to use mathematical models to represent complex 
biological systems. This lecture discusses the role that modeling biological sys­
tems at the steady state plays in understanding the metabolic capabilities of 
interesting organisms and how well steady state models are able to replicate in 
vitro experiments. 

1.1 What is Metabolism? 

According to Matthews and van Holde, metabolism is “the totality of all chem­
ical reactions that occur in living matter”. This includes catabolic reactions, 
which are reactions that lead the break down of molecules into smaller com­
ponents and anabolic reactions, which are responsible for the creation of more 
complex molecules (e.g. proteins, lipids, carbohydrates, and nucleic acids) from 
smaller components. These reactions are responsible for the release of energy 
from chemical bonds and the storage of energy respectively. Metabolic reactions 
are also responsible for the transduction and transmission of information (for 
example, via the generation of cGMP as a secondary messenger or mRNA as a 
substrate for protein translation). 

1.2 Why Model Metabolism? 

An important application of metabolic modeling is in the prediction of drug 
effects. An important subject of modeling is the organism Mycobacterium tu­
berculosis [1]. The disruption of the mycolic acid synthesis pathways of this 
organism would help control TB infection. Computational modeling gives us 
a platform for identifying the best drug targets in this system. Gene knock­
out studies in Escherichia coli have allowed scientists to determine which genes 
and gene combinations affect the growth of that important model organism [2]. 
Both agreements and disagreements between models and experimental data can 
help us assess our knowledge of biological systems and help us improve our 
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predictions about metabolic capabilities. In the next lecture, we will learn the 
importance of incorporating expression data into metabolic models. 

2 Model building 

2.1 Chemical reactions 

In metabolic models, we are concerned with modeling chemical reactions that 
are catalyzed by enzymes. Enzymes work by facilitating a transition state of 
the enzyme-substrate complex that lowers the activation energy of a chemical 
reaction. The diagram on slide 5 of page 1 of the lecture slides demonstrates 
this phenomenon. A typical rate equation (which describes the conversion of 
the substrates of the enzyme reaction into its products S=P) can be described 
by a Michaelis-Menten rate law: V = [S] , where V is the rate of the Vmax Km+[S] 
equation as a function of substrate concentration. Km and Vmax are the two 
parameters necessary to characterize the equation. 

The inclusion of multiple substrates, products, and regulatory relationships 
quickly increases the number of parameters necessary to characterize enzyme 
function. The figures on slides 1, 2, and 3 of page 2 of the lecture notes demon­
strate the complexity of biochemical pathways. Kinetic modeling quickly be­
comes infeasible because the necessary parameters are difficult to measure and 
also vary across organisms [3]. Thus, we are interested in a modeling method 
that would allow us to avoid the use of large numbers of poorly-determined 
parameters. 

2.2 Steady-state assumption 

The steady state assumption allows us to represent reactions entirely in terms 
of their chemistry (the stoichiometric relationships between the components of 
the enzymatic reaction) by assuming that there is not accumulation of any 
metabolite in the system. This does not mean that there is not flux through 
any of the reactions, simply that accumulation does not occur. An analogy 
is to a series of waterfalls that contribute water to pools. As the water falls 
from one pool to another, the water levels do not change even though water 
continues to flow (see page 2 slide 5). This framework prevents us from seeing 
transient kinetics that can result from perturbations of the system, but if we 
are interested in long-term metabolic capabilities (functions on a scale longer 
than milliseconds or seconds) then steady state dynamics may give us all the 
information that we need. 

An important aspect of the steady-state assumption is that reaction sto­
chiometries are conserved across species, whereas the biology of enzyme catal­
ysis (and the parameters that characterize it) are not conserved across species. 
This makes the ability to generalize across species and reuse conserved pathways 
in models much more feasible. 
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2.3 Reconstructing Metabolic Pathways 

There are several databases that can provide the information necessary to re­
construct metabolic pathways in silico. These databases allow reaction stoi­
chiometry to be accessed using Enzyme Commission numbers, which are the 
same in each organism that uses that particular enzyme. Among the databases 
of interest are ExPASy [4], MetaCyc [5], and KEGG [6]. These databases often 
contain pathways organized by function that can be downloaded in a format such 
as SBML, often making pathway reconstruction very easy for well-characterized 
pathways. ExPASy [4], MetaCyc [5], and KEGG [6]. These databases often con­
tain pathways organized by function that can be downloaded in a format such 
as SBML, often making pathway reconstruction very easy for well-characterized 
pathways. 

3 Metabolic Flux Analysis 

Metabolic flux analysis (MFA) is a way of computing the distribution of reaction 
fluxes that is possible in a given metabolic network at steady state. We can 
place constraints on certain fluxes in order to limit the space described by the 
distribution of possible fluxes. 

3.1 Mathematical representation 

We can represent the flux of each substrate xi, we can represent the rate of 
change of that substrate as dxi = S • v, where S is a vector that describes the dt 
stoichiometric coefficients of that metabolite in each reaction in which it is a 
substrate or product. With this steady state assumption, we have 0 = S • v. 
Because we are interested modeling pathways, we represent stoichiometric as an 
m × n matrix S and fluxes as an n-dimensional matrix v. Page 3 slides 3 and 
4 show figures of these mathematical representations. 

3.2 Null space of S 

The feasible flux space through the reactions of the model are defined by the 
null space of S (page 4 slide 5). In addition, there are a series of non-unique 
basis vectors bi that describe the null space (page 4 slide 6). All of the null space 
fluxes are this linear combinations of the basis and v = i aibi. These can be 
found by standard methods such as singular value decomposition (SVD) [7]. 
These basis vectors represent extreme pathways at the edge of the flux cone, 
which is a geometric representation of the flux space and give us important 
information about the metabolic capabilities of the organisms in which we are 
interested (pager 5 slide 2). 
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3.3 Constraining the Flux Space 

One obvious constraint that we can place on our fluxes is that they must be 
positive. Within this framework we can represent reverse reactions as separate 
reactions within the stoichiometric matrix and then set a lower bound on all 
the reactions of 0. Likewise, if we happen to know the maximum fluxes of any 
of our reactions (these values correspond to our Vmax parameters), then we can 
also place these constraints on the flux space. We can also add input and output 
fluxes that represent transport into and out of our cells, which are often much 
easier to measure than internal fluxes and can thus serve to help us to generate 
a more biologically-relevant flux space. An example of an algorithm for solving 
this problem is the simplex algorithm [8]. Page 5 slides 4-6 demonstrate how 
constraints on the fluxes change the geometry of the flux cone. In reality, we 
are dealing with problems in higher-dimensional spaces. 

3.4 Linear Programming 

The constraints described above give us the linear programming problem de­
scribed on slide 31. We justify the formulation of the flux determination prob­
lem as a linear programming problem by recognizing that for a given point in 
time and a given environment an organism will demonstrate one particular flux 
distribution. In order to try and narrow down our feasible flux, we assume that 
there exists a fitness function which is a linear combination of any number of 
the fluxes in the system. Linear programming (or linear optimization) involves 
maximizing or minimizing a linear function over a convex polyhedron specified 
by linear and non-negativity constraints. 

We solve this problem by identifying the flux distribution that maximizes 
an objective function z = i civi = cT v. Our solutions lie at the boundaries of 
the permissible flux space and can be on points, edges, or both. This concept 
is demonstrated on page 6 slide 1. In that slide, A is the stoichiometric matrix, 
x is the vector of fluxes, and b is a vector of maximal permissible fluxes. 

In microbes such as E. coli, this objective function is often a combination 
of fluxes that contributes to biomass. However, this function need not be com­
pletely biologically meaningful. For example, we might simulate the maximiza­
tion of mycolates in M. tuberculosis, even though this isn’t happening biologi­
cally. It would give us meaningful predictions about what perturbations could 
be performed in vitro that would perturb mycolate synthesis even in the absence 
of the maximization of the production of those metabolites. 

Flux balance analysis was pioneered by Palsson’s group at UCSD and has 
since been applied to E. coli, M. tuberculosis, the human red blood cell [9]. 

4 Applications of metabolic modeling 

One application of metabolic modeling is called deletion analysis. In this tech­
nique, we develop a metabolic model for an organism of interest and calculate 
the feasible flux space with constraints while systematically removing reactions 
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to generate in silico mutants (page 6 slide 6). Using this method we can make 
computational predictions about the metabolic capabilities of microbial knock­
out strains [10]. Geometrically, each knockout changes the shape of the flux cone 
and constrains the feasible flux space (page 7 slide 1). If we are using growth 
as our objective function, we can then use the value of the objective function 
at the optimal solution as a measure of phenotype. Errors (discordance with 
experimental observations) can then help us to assess the validity of our model 
and observations. This technique has been used successfully in E. coli and yeast 
[11]. 

In [10], Edwards and Palsson modeled the central metabolism of E. coli us­
ing 720 reactions and 436 metabolites. This large model is an good example of 
a system that is modeled well my a steady-state model and FBA but would be 
exceedingly difficult to describe well using ordinary differential equations. Ed­
wards and Palsson simulated knockouts with pertubations in processes including 
glycolysis, electron transport, the pentose phosphate pathway, and TCA. Simu­
lation results were compared with experimental results and good predictions of 
lethal phenotypes, reduced growth phenotypes, and well-functioning phenotypes 
were achieved. 

The results of [11] may be less impressive. Although good results with 
experimental data are achieved, most of the phenotypes are predicted to survive 
perturbations. Nevertheless, this model and the model of Edwards and Palsson 
both provide a computational foundation for the improvement of our biological 
knowledge. 
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