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Gene expression patterns (motivation) 

Given the complex spatial and temporal regulation of gene expression [7], exemplified by recent 
studies on the mouse [21], and on Drosophila heart development [30], there is great impetus to 
identify the targets of regulatory factors in order to understand how such regulation is achieved. 
Many connections in these regulatory networks are conserved all the way up to mammmals, and 
so we can conceivably use evolutionary information in order to probe the regulatory networks of 
humans. 

We will focus here on regulation of transcription – as achieved by transcription factors (TFs) – 
and also regulation of translation by microRNAs (miRNAs). 

Transcription factors 

TFs regulate the expression of target genes by binding to DNA, in regions that may or may not 
be proximal to the gene that is being regulated. Binding is specific for a particular target 
sequence, or motif , although there is most probably also non-specific binding that enables the 
TFs to bind to other regions of DNA in order to rapidly locate their target sequences [10]. Each 
motif can be viewed as a position weight matrix (PWM), which shows the relative specificity for 
each base at every position in the motif. The effect of TF binding may be to activate or to 
repress gene expression. 
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We will now examine some of the approaches that have been used to discover motifs. 

Experimental discovery 

Several revolutionary experimental methods have enabled motif discovery to be carried out in a 
brute force, de novo fashion, without need for knowledge of promoter regions. 

The Systematic Evolution of Ligands by Exponential Enrichment (SELEX) protocol [32] 
involves taking a pool of RNA or DNA fragments (the library) and adding the protein of 
interest. The members of the library that do not bind to the protein are then removed, and 
another batch of fragments added. This results in enrichment of the sequences that bind 
favourably to the protein, although it does not allow particularly for the binding strength to be 
quantified. 

The DNA immunoprecipitation with microarray detection (DIP-Chip) approach [16] involves 
adding naked genomic DNA fragments of around 600bp to a sample of purified protein. The 
protein-bound fragments are separated and labelled, such that they can be easily identified by 
binding to a whole-genome microarray. 

Protein binding microarrays (PBMs) [20] contain double stranded DNA, meaning that the pro­
tein of interest can bind directly to the microarray. By tagging the protein with a dye, or anti­
body recognition sequence, the PBM can be used to visualize which sequences bind the protein. 
By spotting all possible k -mers on a given chip, a relative intensity can be calculated for each 
sequence, allowing the binding strength to be quantified. 

Computational discovery 

The first approach is to take coregulated genes and perform some kind of enrichment process. 
This enrichment may be achieved by determining which motifs occur in at least n sequences 
[23], or through approaches such as EM or Gibbs sampling (see Lecture 9 ) [17, 31]. 

Another approach to motif discovery is to look for conservation in multiple genomes. Given the 
conservation rate for random motifs, it is possible to assign a p-value to such conserved regions 
[33]. 

This process was pipelined by Kellis et al. [11] in the following fashion: 

i) create motif seeds of the form XXX-(--)n-XXX using six non-degenerate characters (ACGT) 

– note: motifs often have a gap in the middle (around 0-10bp), hence the inclusion of a gap in 
the seeds. A length-10 gap may be biologically justified since this is one turn of the helix, and so 
this motif will correspond to two distinct binding sites on the same side of DNA 

ii) score conservation 

iii) expand seeds using degenerate characters 

iv) cluster motifs using sequence similarity 

Discovered motifs have functional enrichments 

Using a similar procedure to that detailed above, an analysis of 12 Drosophila genomes [29] 
showed that certain motifs were enriched in particular tissues (red dots in figure on slide 14 ), 
and that functional clusters of similar motif expression patterns emerged in related tissues. Con­
versely, ubiquitously expressed genes showed a particularly low occurrence of most motifs, indi­
cating that these genes are not regulated by TFs. 
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The earlier studies on mammals [33] showed positional bias with respect to the transcription 
start site (TSS), and tissue-specific expression for many of the computationally discovered 
motifs, all of which suggests that the computational procedure is detecting motifs that are actu­
ally involved in regulation. 

Summary 

Despite numerous successful applications, experimental approaches are costly and slow, and gen­
erally require purified TF. It may also be necessary to apply computational procedures to pro­
cess the microarray data obtained, so one cannot regard them as purely experimental tech­
niques. 

However, computational approaches also require sets of coregulated genes or multiple genomes 
in order to carry out the procedures outlined above. In addition, whilst it is not necessary to 
possess a priori knowledge of the TFs before carrying out these analyses, this can mean that it 
is difficult to subsequently match the discovered motifs to specific TFs. 

microRNAs 

The biology 

microRNAs are short pieces of DNA around 20 nucleotides in length, which are transcribed from 
the genome by Pol II. After several processing steps, including by the nuclease Drosha, the 
miRNA is exported from the nucleus. It then has the loop removed by an enzyme known as 
Dicer, leaving an miRNA:miRNA duplex. This is eventually cleaved by a helicase, and one sec­
tion of single-stranded RNA then joins with the RNA-induced silencing complex (RISC), 
forming the miRISC [3]. This complex binds to a target mRNA sequence, and disrupts transla­
tion by interrupting the progress of the ribosomes. The miRISC also marks the mRNA for 
degradation. 

Whilst only discovered fifteen years ago [13], miRNAs are now known to be involved in almost 
every level of regulation, and most genes are now thought to be targetted by miRNAs [9]. In 
addition to the mechanisms of translation regulation already mentioned, it has been suggested 
that the miRNAs may help to filter out noise in expression levels [28], as well as cleaning up 
residual mRNAs. 

The structure of the miRNA tends to be a stem-loop, with two complementary arms linked by a 
loop region [3]. One of these arms contains a binding sequence that is complementary to the 
target mRNA, and this arm will become part of the miRISC. Occasionally the other arm may 
also bind a different mRNA sequence, in which case this second arm is termed the star arm. 
Other structural features may include small loops along the arms where there is mismatch in 
complementarity. Interestingly, despite the length of the miRNA sequence, the specificity of the 
miRNA for its target mRNA sequence is conferred mainly by a 7-8 nucleotide stretch at the 
start of the region of the binding arm of the miRNA that goes on to form the miRISC. 

Computational miRNA discovery 

Given the distinctive structural features of miRNAs, one computational strategy for detecting 
them is to search the genome for likely hairpins, featuring two complementary regions with a 
short loop in between. However, many such hairpins exist, and very few true miRNAs are 
among these. As such, very high specificity is needed for reliable prediction. 

It has been observed that structural features alone are insufficient to reliably predict miRNAs, 
even when folding energy and other features are all incorporated into a machine learning 
approach. Screening for hairpin energy does result in around a 40-fold enrichment for true 
miRNAs, but this is not sufficient given the huge number of putative hairpins. 
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12 Drosophila genomes 

Using the alignment of the genomes of twelve species of Drosophila from Clark et al. [1], it was 
observed that the miRNA arms are highly conserved, whilst the loop tends to be less conserved. 
Given that one of the arms actually binds to the mRNA, whereas the loop is cleaved and has no 
specific function (in these examples at least), one might expect this pattern of conservation. It 
was also noted that the regions flanking the loop are not well conserved, and these different pat­
terns of conservation give rise to a characteristic conservation profile for miRNAs. 

Using a machine learning approach on this conservation profile, Ruby et al. [24] were able to 
achieve much higher enrichment for true miRNAs. Indeed, combining this with all the other fea­
tures enabled a 4551-fold enrichment, which could be deemed sufficient for predictive purposes. 

Validation of the predicted miRNAs 

Experimental approaches have been used to sequence miRNAs (usually just the arms), and a 
the predicted miRNAs were observed to show a good match with these experimental reads [24]. 
Of the 101 hairpins obtained through the computational procedure, good evidence was found to 
suggest that most of these were in fact true miRNAs. Of those that did not match any existing 
evidence, many were found within introns and intergenic regions, which indicates that the pre­
dictions are in fact reasonable. In addition, many predicted miRNAs were seen to cluster with 
other known miRNAs. 

In theory, both sense and anti-sense strands of the miRNA gene could fold up to form the same 
hairpin, with the star arm of the sense hairpin equivalent to the non-star arm of the antisense 
hairpin [24]. Nevertheless, there was an observed preference for the sense strand in many cases 
[29], although this could provide an additional mechanism for variability. 

Two predicted miRNAs were observed to overlap with protein coding genes [15], and as such 
these were initially discarded. However, as it turned out, these regions of the genome had in fact 
been erroneously annotated as protein coding regions due to the transcription of the miRNA 
genes. 

Additional signatures of mature miRNAs 

As already mentioned, the 7mer at the 5’ of the mature miRNA (or miRNA*) sequence is chiefly 
responsible for the specificity of binding. This short region was observed to be highly conserved, 
particularly in the non-star sequence, and as such, the high conservation of this region can be 
used to identify the adjacent cleavage site, and to predict the 5’ end of the miRNA. It was also 
observed that this 7mer tends to be conserved in the 3’ UTRs of target sequences, but avoided 
in those of anti-targets, demonstrating both positive and negative selection. 

In the cases where it was not possible to predict the 5’ end accurately, imprecise processing was 
observed to be associated with these miRNAs [29], providing another example of the link 
between the computational and biological features of miRNA regulation. 

Question: how much of miRNA specificity comes from the RISC complex? 

Answer: It is mostly bases 2-7 of the miRNA that determine specifity, with the RISC acting as 
more of a scaffold. The first base of the 7mer is less important, and tends to be a T or a U. 
There is in fact a crystal structure of an miRNA:mRNA complex from C.elegans that was pub­
lished earlier this year [6]. 
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Prediction of binding sites 

With motif discovery one can look for statistical enrichment over the whole genome in order to 
establish the consensus for the motif. However, in order to find a single instance of a binding 
site (whether for a TF binding site, or an miRNA target), different procedures must be adopted 
[12]. 

Experimental approaches 

Several chromatin immunoprecipitation (ChIP) techniques have been developed in order to 
detect protein-DNA binding. The general approach consists of using antibodies for a particular 
protein to immunoprecipitate sequences bound to the protein. This can be followed by either 
microarray detection (ChIP-Chip), or sequencing (ChIP-Seq) [18] of the bound sequences. 

However, both of these approaches rely on antibody availability, and are restricted to specific 
tissues. Although this specificity can also be useful, the experimental approaches are plagued by 
high false positive and false negative rates. In principle these approaches find all binding sites, 
but if there is lots of TF then low-affiinity sites may become bound, and so the definition of a 
binding site will depend on the specific conditions used. 

Computational approaches 

The main role for computational approaches is to increase the specificity of matching. Single-
genome approaches may look for clustering of binding sites for TFs that are thought to act 
together [22, 4, 27], but these techniques may miss instances where TFs act alone. Multi-genome 
approaches, such as phylogenetic footprinting [19, 5, 8, 14] are therefore of interest. 

Phylogenetic footprinting 

Within a given multiple sequence alignment (MSA), there may be regions that are not present 
in all the aligned sequences. In particular, some binding sites for a specific motif may only be 
conserved in a subset of the species, and may have moved, or mutated in other species. Tradi­
tional conservation-based approaches to detecting binding sites might therefore miss these cases. 

One possible way of tackling this problem is to use the notion of the branch length score (BLS) 
to assign a score to particular instances where a binding site is ‘missing’ in certain sequences. 
The BLS is computed by taking the total length of all the branches in the phylogenetic tree con­
necting the sequences that possess the binding sequence, and dividing this total by the sum of 
the branch lengths for the tree connecting all sequences [12]. The result of this is that the 
absence of the binding sequence from a few short branches of the tree does not have a large 
impact on the resulting score. 

The BLS can be converted into a confidence score by using random motifs to work out the 
signal 

average background noise, and then expressing the confidence score as C = 
signal + noise 

. 

This confidence score has been shown to select for TFs that occur within promoters, and 
miRNA motifs in the 3’ UTRs of their target mRNAs 

Confidence score must be saying something, since high confidence score enriches for strand bias 
in miRNAs, as well as recapitulating the strand bias observed in miRNA motifs. 

Comparison with experiment 

When the high-confidence binding sites are compared to sequences derived from ChIP data, a 
high enrichment for ChIP sequences is observed in both mammals and flies [2]. If the binding 
sequences are highly conserved as well as posessing a high confidence score, an even higher 
enrichment is observed. When the promoters of fly muscle genes were examined, there is a clear 
enrichment for activating motifs in genes that are highly expressed in muscle tissue, and a corre­
sponding enrichment for repressor motifs in underexpressed genes. The computational procedure 
was able to detect this enrichment better than the ChIP data [34, 26, 25] in almost all cases. 
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It is worth noting, however, that an advantage of the ChIP experiments over computational pro­
cedures that employ evolutionary information is that the former allow detection of species-
specific binding, whereas the latter rely on a signal across species. 

Network level examination 

The regulatory network for the fly was reconstructed using the computational predictions, and 
was seen to feature several links that are confirmed by the literature. It was also observed that 
many genes are highly regulated by both TFs and miRNAs, as shown by the correlated in-
degrees in the network. All of this could be taken to support the validity of the computational 
procedures that have been described. 
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