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Fall 2008 6.047/6.878 Lecture 13


Population Genomics II : Pardis Sabeti


1 Introduction 

In this lecture we will discuss linkage disequilibrium and allele correlations, as 
well as applications of linkage and association studies. 

2 Linkage/Haplotypes 

Recall Mendel’s Law of Independent Assortment, which states that allele pairs 
from different loci separate independently during the formation of gametes. 
For example if we have a population of individuals such that at a given locus 
we find 80% A and 20% G, while at a second locus of interest we find 50% C 
and 50% T, then independent assortment would imply that the corresponding 
haplotype frequencies at this double loci in the next generation should be (80% 
* 50%) = 40% AC, (20% * 50%) = 20% GC, and similarly, 40% AT, 10% GT. 

However in real life the separation is not always independent, since the two 
loci may be linked, by being close together on the same chromosome. For 
example for the allele frequencies at the two loci given above we might get 
actual haplotype frequencies of 30% AC, 20% BC, 50% AT, and 0% GT. 

This occurs due to ”linkage disequilibrium”, which is the disequilibrium of 
the allele frequencies which occur when the loci are close enough that link­
age occurs (eventually, recombination occurs and the frequencies settle into 
equilibrium). Linkage disequilibrium such as in this example, where there are 
only two alleles observed at each of two loci of interest, is often measured by 
a quantity, D, which is defined as follows: 

D = |ObsP (A1B1) ∗ ObsP (A2B2) − ObsP (A1B2) ∗ ObsP (A2B1)| 

where ObsP (AiBj ) denotes the fraction of observed haplotypes at the A and 
B loci consisting of allele Ai at locus A and allele Bj at locus B. (Note: in our 
example, A1 = A, A2 = G, B1 = C, and B2 = T .) In general, A1, B1 denote 

1




the ”major alleles” and A2, B2 the ”minor alleles” at the two loci. 

Note that if there is no linkage disequilibrium, i.e., the allele pairs separate 
independently, then ObsP (AiBj ) is simply the product of the allele frequencies, 
P (Ai) and P (Bj ). It follows that in this case, 

D = |P (A1) ∗ P (B1) ∗ P (A2) ∗ P (B2) − P (A1) ∗ P (B2) ∗ P (A2) ∗ P (B1)| = 0. 

For the observed haplotype frequencies given above, we instead get 

D = |0.3 ∗ 0 − 0.5 ∗ 0.2| = 0.1. 

It is useful to compare to D to Dmax, the maximum possible value of D given 
the allele frequencies you have. One can show that Dmax is equal to the 
smaller of the expected haplotype frequencies ExpP (A1B2) and ExpP (A2B1) 
when there is no linkage (see Appendix). In particular, it is convenient to 
define 

D 
D� = 

Dmax 
which in this case equals 0.1/0.1 = 1, indicating the maximum possible link­
age disequilibrium, or ”complete skew”. (D� varies between 0 when totally 
unlinked, to 1 when totally linked.) 

Three other examples of linkage disequilibrium are given in the slides for this 
lecture– two with complete skew (D’=1) – in each case where only two ga­
metes are observed, and one with partial (D’=0.6), where all four gametes are 
observed. 

Note that it is unusual to see all four gametes, absent recombination, since the 
fourth gamete would most probably require a repeat mutation at one of the 
two loci, which is assumed to never happen by the Inifinite Sites Assumption. 
Consistent with the Infinite Sites Assumption is a simple test called the Four 
Gamete Test which says that if there are fewer than four gametes (at a double 
locus), then recombination does not need to be invoked to explain it, however 
if there are four gametes then a recombination must have occured. Note that 
the Infinite Sites Assumption is just a model, which fails for example when 
the mutation rate is high. 
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More generally, for n loci, in the case of complete linkage, so that no recom­
bination occurs, we expect at most n + 1 distinct haplotypes (the ancestral 
haplotype and a haplotype resulting from a single mutation at each of the n 
loci). Whereas with no linkage, so that all recombinations occur, any of 2n 

haplotypes occur, since any subset of the n loci may have a mutation in that 
case. 

Linkage disequilibrium is governed by recombination rate and the amount of 
time (in generations) that has passed. With time, linkage disequilibrium drops 
off, more quickly when the recombination rate is higher. Some parts of the 
genome have higher recombination rates than others, so it is not always physi­
cal distance in the genome which determines recombination rates between two 
loci. (For example, there is a motif which seems to recruit recombinase, thus 
raising recombination rates whereever that motif is prevalent.) 

History also matters– for example, perhaps one of the mutations hasn’t been 
around as long, and therefore there hasn’t been enough time for the linkage 
disequilibrium to break down. 

Correlation between alleles is an important concept related to linkage. It’s 
governed by linkage between the alleles and the allele frequencies. When allele 
frequencies are very different, correlation is lower. Correlation is measured by 
the correlation coefficient r2, defined as 

D2 
2 r = 

P (A1)P (A2)P (B1)P (B2) 

in the case where there are two alleles at each of the two loci of interest. The 
correlation coefficient is a measure of how predictive the allele at locus A is 
of the allele at locus B. There are two examples given in the slides– one with 
complete correlation (r2 = 1), and the other with low correlation (r2 = 0.25). 

Correlation is also useful in disease mapping. This slide shows how one dis­
ease may be predicted by the SNP at locus B, whereas another disease may 
not be predicted by any one SNP, but can be predicted by the double SNP 
at loci A and B. In these cases we say that the SNP at B is a ”tag” for the 
first disease, while the double SNP at A and B is a ”tag” for the second disease. 

Next we will discuss some linkage applications, but first we give an overview 
of classic linkage analysis. 
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3 Classic Linkage Analysis 

The classic goal is to find out what causes a disease, or more generally, a 
phenotype of interest. The classic way to do this was to study pedigrees. 
Traditionally, squares denote men, and circles women, color denotes affected 
individuals, and white denotes unaffected individuals. An informative marker 
in a linkage study is heterozygous in the parent of interest. For example, the 
the first slide titled ”Tracing Inheritance of a Disease Gene” it is easy to see 
that C is transmitted by the father whenever the child is affected, but in the 
second slide, it is A that is transmitted by the father whenever the child is 
affected. Thus in the first case it seems that the causative site for the disease 
is linked to allele C, whereas in the second case, it seems to be linked to allele 
A. A classic way to measure linkage given a pedigree is the LOD score, which 
is the log odds that the observed phenotypes would occur if the recombination 
rate were some assumed value vs. 0.5 (which corresponds to no linkage). 

In this way it took about 20 years to localize and understand the most preva­
lent known causative mutation for cystic fibrosis (CF). Via DNA sequence 
comparison, it was discovered that the mutation is in the transmembrane part 
of a protein affecting function of the chloride channel. 

In classic linkage analysis, you can find a many megabase region with a linkage 
signal, but then how do you find where the causative gene is in that region? 
It would obviously be much easier if the region were sufficiently small. 

Note that in classic linkage analysis we only need linkage with a locus, not 
with an allele. 

4 Population Association 

Nowadays we look for allele-associated linkage– i.e., the allele and the causative 
mutation are close enough that the phenotype is associated, not just linked, 
to the allele. (The allele and the causative mutation are close enough that 
recombination has never occurred between them.) 

For example, the ApoE4 allele is associated with Alzheimer’s disease, HFE 
with Venous thrombosis, and several other common variants are listed in the 
slides. Thanks to dramatic technological advances in sequencing we now have 
a comprehensive catalog of human variation which make genome-wide associ­
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ation studies feasible. Eric Lander et al were responsible for the first genome-
wide map, of 4000 SNP’s, in 1998. In 1999, The SNP Consortium (TSC) 
announced their 2-year goal to map 300,000 SNP’s across the human genome, 
but in 2000 already 1.4 million SNP’s were mapped (via shotgun sequencing 
by David Altshuler et al), and the progress continued to escalate, so that by 
2004 there were 8 million SNP’s mapped. 

The International HapMap Project formed in 2002 with the goal of genotyping 
3 million well-defined SNP’s in 270 people in order to determine correlation 
among these SNP’s, i.e., resulting in a mapping of haplotypes. 

Note that in parts of the genome where recombination rates are low, 1 SNP 
per 5 kilobases of DNA can be sufficient, but in areas where recombination 
is frequent, considerably more SNP’s are needed, for a meaningful association 
study. 

In October of 2005 HapMap met its goal. The slide shows pairwise comparison 
of the SNP’s across the genome, displayed via Haploview by Mark Daly et al. 
In this graphic red represents linkage and white represents no linkage. Pairs 
of SNP’s across the genome point down to linkage disequilibrium values (D’) 
indicated by color (red for linkage, white for no linkage). Note that the closer 
two SNP’s are, the higher prob. they will point to red. Also note the ”hap­
lotype blocks” – red regions showing almost complete linkage disequilibrium 
between all the SNP’s in those regions. Straight white areas correspond to 
recombination hotspots, where linkage disequilibrium completely drops off. 

4.1 Case Control 

Roughly 80% of common genetic variations in humans have been identified, 
but further sequencing still needs to be done. Major technology advances have 
brought us to the point where we can genotype 1.2 million polymorphisms in 
500 people or more, per day. 

When studying all of this data, it is essential that cases and controls are well 
defined. For example, we can calculate the frequencies of disease vs. no disease 
in the presence of two different alleles at a given locus, and then compute 
the relative risk of the disease in the presence of each of the two alleles. In 
particular, calculate the Odds Ratio (OR) for allele 1 as follows: 
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OR(All1) = 
(disease and allele 1) × (disease and allele 2) 

(no disease and allele 1) × (disease and allele 2) 

and analogously, the OR(All2), which is simply the reciprocal of OR(All1). 
To evaluate the confidence we should have in these numbers we can compute 
the standard error and the 95% confidence intervals around OR(All1) and 
OR(All2), for example for the frequencies given in the Case Control slides for 
this lecture, we get 95% confidence intervals which are significant since they 
do not span the value 1 (which would correspond to the completely random 
case). It is also common to compute the Chi-Square value as a measure of the 
significance of these results. 

4.2 Example: Age-related Macular Degeneration 

A good example of a disease which has become much more understood thanks 
to genome-wide association studies is Age-related Macular Degeneration (AMD), 
which causes loss of vision at the focal point in older people, so that they only 
have peripheral vision. In 2004 we had no idea why it was happenning. In 
2006 at the Broad Institute and elsewhere, using a whole genome association 
scan, scientists found 3 genes with 5 common variants explaining 50% of AMD 
occurrence. 

For many other diseases (diabetes, schizophrenia, multiple sclerosis, etc.) there 
are already good candidates for causative mutations, which are in the process 
of being better understood by similar studies. 

4.3 Transmission Disequilibrium Test (TDT) 

A commonly done association test which is not subject to population stratifi­
cation is the Transmission Disequilibrium Test (TDT ), within families. 

To do TDT, we look at families of three (two parents and a child), in which at 
least one of the parents is heterozygous for a marker and the child is affected, 
and note which allele is passed to the affected child from each heterozygous 
parent. In the absence of association between the marker and the disease, we 
expect a 1:1 ratio for the allele transmitted from the heterozygous parent to 
the affected child. Over many families, we can compute 

X2 (n1 − n2)
2 

= TDT (n1 + n2) 
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where ni denotes the number of times allele i was transmitted from a heterozy­
gous parent to the affected child, as a measure of the association between this 
marker and the occurrence of the disease. 

4.4 Measuring length of haplotype 

Another measure of linkage disequilibrium which is specific not only to the 
locus of interest but also the particular allele at that locus is the length of 
the haplotype of that allele at that locus. Sabeti developed Extended Hap­
lotype Homozygosity (EHH), an especially useful measure of the length of a 
haplotype. This is a bifurcation diagram showing the region of the ancestral 
chromosome with nodes corresponding to a set of long-range markers in that 
region, and branches off of those nodes to other sub-branches with correspond­
ing nodes which may branch or not, as well, depending on what mutations have 
occurred at what markers. The thickness of the branches between each pair 
of nodes indicates the prevalence of the corresponding allele at the marker 
corresponding to its endpoint. Thus it captures the decay of association to 
markers at various distances from the starting locus, giving a fuller picture of 
the ”length” of the haplotype. 

5 Appendix 

Irwin Jungreis has kindly provided the following derivation of the formula for 
Dmax, the maximum value of the measure of linkage disequilibrium, D, given 
the allele frequencies. 

Since the allele frequencies are computed from the observed data, they impose 
constraints on the observed values. Let p = P (A1), q = P (B1). Then we have 

ObsP (A1B1) + ObsP (A1B2) = p 

ObsP (A2B1) + ObsP (A2B2) = 1 − p 

ObsP (A1B1) + ObsP (A2B1) = q 

ObsP (A1B2) + ObsP (A2B2) = 1 − q 

If we treat p and q as known and ObsP (AiBj ) as unknowns we have 4 equations 
in 4 unknowns. However, they are singular, because the sum of the first two 
equations equals the sum of the second two. So there is a 1-dimensional family 
of solutions. Since the expected values are one possible solution, the family of 
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solutions can easily be seen to be: 

ObsP (A1B1) = ExpP (A1B1) + t 

ObsP (A1B2) = ExpP (A1B2) − t 

ObsP (A2B1) = ExpP (A2B1) − t 

ObsP (A2B2) = ExpP (A2B2) + t 

with constraints t >= −ExpP (A1B1), t <= ExpP (A1B2), t <= ExpP (A2B1), t >= 
−ExpP (A2B2) since the probabilities ObsP (AiBj ) ≥ 0. 
It is easy to see then that 

max(t) = min(ExpP (A1B2), ExpP (A2B1)) 

max(−t) = min(ExpP (A1B1), ExpP (A2B2)) 

max(|t|) = max(min(ExpP (A1B2), ExpP (A2B1)), min(ExpP (A1B1), ExpP (A2B2)) 

Since A1 and B1 are the major alleles, we have p ≥ 1 − p and q ≥ 1 − q, so 
pq >= p(1−q), pq >= q(1−p), (1−p)(1−q) <= p(1−q), and (1−p)(1−q) <=

q(1 − p). Thus


min(ExpP (A1B2), ExpP (A2B1)) >= ExpP (A2B2) = min(ExpP (A1B1), ExpP (A2B2))


so

max(|t|) = min(ExpP (A1B2), ExpP (A2B1)). 

It remains to show that D = |t|. By definition, 

D = |ObsP (A1B1) ∗ ObsP (A2B2) − ObsP (A1B2) ∗ ObsP (A2B1)|, 

but 

ObsP (A1B1)∗ObsP (A2B2) = ExpP (A1B1)∗ExpP (A2B2)+t(ExpP (A1B1)+ExpP (A2B2))+t2 

and 

ObsP (A1B2)∗ObsP (A2B1) = ExpP (A1B2)∗ExpP (A2B1)−t(ExpP (A1B2)+ExpP (A2B1))+t2 

so D = |pq(1 − p)(1 − q) − p(1 − q)q(1 − p) + t| = |t|, as desired. 
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