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Somewhere, something went wrong…
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Challenges in Computational Biology

DNA

4 Genome Assembly

Gene FindingRegulatory motif discovery

Database lookup

Gene expression analysis9

RNA transcript

Sequence alignment

Evolutionary Theory7
TCATGCTAT
TCGTGATAA
TGAGGATAT
TTATCATAT
TTATGATTT

Cluster discovery10 Gibbs sampling
Protein network analysis12

Emerging network properties14

13 Regulatory network inference

Comparative Genomics

RNA folding



Goals for today
• Basics of phylogeny

– Characters, traits, nodes, branches, lineages
– Gene trees, species trees

• Modeling sequence evolution
– Turning sequence data into distances
– Probabilistic models of nucleotide divergence
– Jukes-Cantor 1-parameter model, Kimura 2-parameter model

• From distances to trees
– Ultrametric, Additive, General Distances
– UPGMA, Neighbor Joining, guarantees and limitations
– Least-squared error, minimum evolution

• From alignments to trees
– Parsimony methods: set-based vs. dynamic programming
– Maximum likelihood methods
– MCMC and heuristic search



Open questions (?)

• Panda
– Bear or raccoon?

• Out of Africa
– mitochondrial evolution story?

• Human evolution
– Did we ever meet Neanderthal?

• Primate evolution
– Are we chimp-like or gorilla-like?

• Vertebrate evolution
– How did complex body plans arise?

• Recent evolution
– What genes are under selection?



Inferring Phylogenies: Traits and Characters

Trees can be inferred by several criteria:
– Morphology data

– Molecular data
Kangaroo ACAGTGACGCCCCAAACGT
Elephant ACAGTGACGCTACAAACGT
Dog CCTGTGACGTAACAAACGA
Mouse CCTGTGACGTAGCAAACGA
Human CCTGTGACGTAGCAAACGA

Image removed due to copyright restrictions.



Traits – as many as we have letters in DNA
YAL042W         -MKRSTLLSLDAFAKTEEDVRVRTRAGGLITLSCILTTLFLLVNEWGQFNSVVTRPQLVV
candida586      MSSRPKLLSFDAFAKTVEDARIKTTSGGIITLICILITLVLIRNEYVDYTTIITRPELVV
cdub17784       MSSRPKLLSFDAFAKTVEDARIKTTSGGIITLICILITLVLIRNEYVDYTTIITRPELVV
cgla72177       -MKKSTLLSFDAFAKTEEDVRIRTRSGGFITLGCLVVTLMLLLSEWRDFNSVVTRPELVI
cgui48535       -MPQPKLLSFDAFAKTVEDARVRTPAGGIITLICVIVVLYLIRNEYLEYTSIINRPELVV
clus15345       MSSRPRLLSLDAFAKTVEDARVKTASGGVITLVCVLIVLFLIRNEYSDYMLVVVRPELVV
ctro67868       MSSRPKLLSFDAFAKTVEDARIKTASGGIITLICVLITLILIRNEYIDYTTIITRPELVV
klac20931       -MKKSPLLSIDAFGKTEEDVRVRTRTGGLITVSCIIITMLLLVSEWKQFSTIVTRPDLVV

:. ***:***.** **.*::* :**.**: *:: .: *: .*: ::  :: **:**:

YAL042W         DRDRHAKLELNMDVTFPSMPCDLVNLDIMDDSGEMQLDILDAGFTMSRLNSEG------R
candida586      DRDINKQLDINLDISFINLPCDLISIDLLDVTGDLSLNIIDSGLKKIRLLKNKQGDVIVN
cdub17784       DRDINKQLDINLDISFINLPCDLISIDLLDVTGDLSLNIIDSGLKKIRLLKNKQGDVIVN
cgla72177       DRDRSLRLDLNLDITFPSMPCELLTLDIMDDSGEVQLDIMNAGFEKTRLSKEG------K
cgui48535       DRDINKKLEINLDISFPDIPCDVLTMDILDVSGDLQVDLLLSGFEKFRLLKDG------L
clus15345       NRDVNRQLDINLDITFPDVPCGVMSLDILDMTGDLHLDIVESGFEMFRVLPLG------E
ctro67868       DRDINKQLDINLDISFINLPCDLISVDLLDVTGDQQLDIIDSGLKKVRLLKNKQGDVIIN
klac20931       DRDRHLKLDLNLDVTFPSMPCNVLNLDILDDSGEFQINLLDSGFTKIRISPEG------K

:**   :*::*:*::* .:** ::.:*::* :*:  :::: :*:   *:           

YAL042W         PVGDATELHVGGNGDGTAPV--NND---PNY-CGPCYGAKDQSQN-ENLAQEEKVCCQDC
candida586      EIEDDEPAFNNDIELSDLAKGLPEGSDENAY-CGSCYGALPQDK--------KQFCCNDC
cdub17784       EIEDDEPAFNNDIELTDLAKGLPEGSDENAY-CGSCYGALPQDK--------KQFCCNDC
cgla72177       VLGTA-DMKIGEAAKKDKEA--QLAKLGANY-CGNCYGARDQGKNNDDTPRDQWVCCQTC
cgui48535       EIRDESPVMSSAGELEERAR----GRAPDGL-CGSCYGALPQDEN-------LDYCCNDC
clus15345       EISDDLPLLSGAKKFEDVCGPLTEDEISRGVPCGPCYGAVDQTD--------NKRCCNTC
ctro67868       EIEDDKPALNSDVSLKELAKGLPEGSDQNAY-CGPCYGALPQDK--------KQFCCNDC
klac20931       ELSKE-KFQVGDKS--SKQS--FNE---EGY-CGPCYGALDQSKN-DELPQDQKVCCQTC

:        .                     ** ****  * .    **: *

YAL042W         DAVRSAYLEAGWAFFDGKNIEQCEREGYVSKINEHLN--EGCRIKGSAQINRIQGNLHFA
candida586      NTVRRAYAEKHWSFYDGENIEQCEKEGYVGRLRERINNNEGCRIKGTTKINRVSGTMDFA
cdub17784       NTVRRAYAEKHWSFYDGENIEQCEKEGYVARLRERINNNEGCRIKGTTKINRVSGTMDFA
cgla72177       DDVRQAYFEKNWAFFDGKDIEQCEREGYVQKIADQLQ--EGCRVSGSAQLNRIDGNLHFA
cgui48535       ETVRLAYAQKAWGFFDGENIEQCEREGYVARLNEKINNFEGCRIKGTGKINRISGNLHFA
clus15345       EAVRMAYAVQEWGFFDGSNIEQCEREGYVEKMVSRINNNEGCRIKGSAKINRISGNLHFA
ctro67868       NTVRRAYAEKQWQFFDGENIEQCEKEGYVKRLRERINNNEGCRIKGSTKINRVSGTMDFA
klac20931       DDVRAAYGQKGWAFKDGKGVEQCEREGYVESINARIH--EGCRVQGRAQLNRIQGTIHFG

: ** **    * * **..:****:****  :  :::  ****:.*  ::**:.*.:.*.



From physiological traits to DNA characters

• Traditional phylogenetics
– Building species trees
– Small number of traits

• Hoofs, nails, teeth, horns
– Well-behaved traits, each arose once

• Parsimony principle, Occam’s razor

• Modern phylogenetics
– Building gene trees and species trees
– Very large number of traits

• Every DNA base and every protein residue
– Frequently ill-behaved traits

• Back-mutations are frequent (convergent evolution)
• Small number of letters, arise many times independently



Ancestral Node
or ROOT of 

the Tree
Internal Nodes or
Divergence Points 

(represent hypothetical 
ancestors of the taxa)

Branches or
Lineages

Terminal Nodes 

A

B

C

D

E

Represent the
TAXA (genes,
populations,
species, etc.)
used to infer
the phylogeny 

Common Phylogenetic Tree Terminology



Taxon A

Taxon B

Taxon C

Taxon D

1
1
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change
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Taxon D

time

Taxon A

Taxon B

Taxon C

Taxon D

no 
meaning

Three types of trees

Cladogram Phylogram Ultrametric tree

All show the same evolutionary relationships, or branching orders, between the taxa.



Molecular phylogenetic tree building methods:

Are mathematical and/or statistical methods for inferring the divergence 
order of taxa, as well as the lengths of the branches that connect them.  
There are many phylogenetic methods available today, each having
strengths and weaknesses.  Most can be classified as follows:

COMPUTATIONAL METHOD

Clustering algorithmOptimality criterion
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2. Modeling evolution

Inferring evolutionary distance



Measuring evolutionary rates

• Nucleotide divergence
– Uniform rate.  Overall percent identity. 

• Transitions and transversions
– Two-parameter model. A-G, C-T more frequent. 

• Synonymous and non-synonymous substitutions
– Ka/Ks rates.  Amino-acid changing substitutions

• Nsubstitutions > Nmutations

– Some fraction of “conserved” positions mutated twice
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‘Evolving’ a nucleotide under random model

A G

C T

.1

.1.1

.1

.1

.1

.7.7

.7.7

• At time step 0, start with letter A
• At time step 1: 

– Remain A with probability 0.7
– Change to C,G,T with prob. 0.1 each

• At time step 2: 
– In state A with probability 0.52

• Remain A with probability 0.7 * 0.7
• Go back to A from C,G,T with 0.1*0.1 each

– In states C,G,T with prob. 0.16 each

t=1 t=2 t=3 t=4 t=5

A 1 0.7 0.52 0.412 0.3472

C 0 0.1 0.16 0.196 0.2176

G 0 0.1 0.16 0.196 0.2176

T 0 0.1 0.16 0.196 0.2176



Modeling Nucleotide Evolution
During infinitesimal time Δt, there is not enough time for two 

substitutions to happen on the same nucleotide

So we can estimate P(x | y, Δt), for x, y ∈ {A, C, G, T}

Then let

P(A|A, Δt) …… P(A|T, Δt)
S(Δt) = … …

P(T|A, Δt) …… P(T|T, Δt)



Modeling Nucleotide Evolution
Reasonable assumption: multiplicative 

(implying a stationary Markov process)

S(t+t’) = S(t)S(t’)

That is, P(x | y, t+t’) = Σz P(x | z, t) P(z | y, t’)

Jukes-Cantor: constant rate of evolution

1 - 3αε αε αε αε
For short time ε, S(ε) = αε 1 - 3αε αε αε

αε αε 1 - 3αε αε
αε αε αε 1 - 3αε



Modeling Nucleotide Evolution
Jukes-Cantor:

For longer times,

r(t) s(t) s(t) s(t)
S(t) = s(t) r(t) s(t) s(t)

s(t) s(t) r(t) s(t)
s(t) s(t) s(t) r(t)

Where we can derive:

r(t) = ¼ (1 + 3 e-4αt)
s(t) = ¼ (1 – e-4αt)

A G

C T

A other
3α

1−3α

α

1−α

α

αα

α

α

α



Modeling Nucleotide Evolution

Kimura:

Transitions: A/G, C/T
Transversions: A/T, A/C, G/T, C/G

Transitions (rate α) are much more likely than transversions (rate β)

r(t) s(t) u(t) u(t)
S(t) = s(t) r(t) u(t) u(t)

u(t) u(t) r(t) s(t)
u(t) u(t) s(t) r(t)

Where s(t) = ¼ (1 – e-4βt)
u(t) = ¼ (1 + e-4βt – e-2(α+β)t)
r(t)  = 1 – 2s(t) – u(t)

A G C T

A
G

C

T



Distance between two sequences

Given (well-aligned portion of) sequences xi, xj,

Define 
dij = distance between the two sequences

One possible definition:
dij = fraction f of sites u where xi[u] ≠ xj[u]

Better model (Jukes-Cantor):
dij = - ¾ log(1 – 4f / 3) 

r(t) = ¼ (1 + 3 e-4αt)
s(t) = ¼ (1 – e-4αt)

Observed F = [ 0.1,    0.2,  0.3,    0.4,   0.5,   0.6,   0.7])
Actual      D = [0.11, 0.23, 0.38, 0.57, 0.82, 1.21, 2.03]



3. From distances to trees

Ultrametric, additive, and general
distance matrices



3a. Ultrametric distances

• For all points i, j, k
– two distances are equal and third is smaller

d(i,j) <= d(i,k) = d(j,k)
a+a <=  a+b =  a+b

a

a

b

i

j

k

where a <= b

• Result: 
– All paths from labels are equidistant to the root
– Rooted tree with uniform rates of evolution



3b. Additive distances

• All distances satisfy the four-point condition
– For all i,j,k,l: 

• d(i,j) + d(k,l) <=    d(i,k)  +    d(j,l)    =    d(i,l)  +  d(j,k)
• (a+b)+(c+d) <= (a+m+c)+(b+m+d) = (a+m+d)+(b+m+c)

• Result: 
– All pairwise distances obtained by traversing a tree

a

b

m

i

j

k

l

c

d



3c. General distances
• In practice, a distance matrix is neither ultrametric nor additive

– Noise
• Measured distances are not exact
• Evolutionary model is not exact

– Fluctuations
• Regions used to measure distances not representative of the species 

tree
• Gene replacement (gene conversion), lateral transfer
• Varying rates of mutation can lead to discrepancies

• In the general case, tree-building algorithms generate an 
approximation to the distance matrix
– Such a tree can be obtained by

• Enumeration and scoring of all trees (too expensive)
• Neighbor-Joining (typically gives a good tree)
• UPGMA (typically gives a poor tree)



Distance matrix Phylogenetic tree

Hum Mou Rat Dog Cat

Human 0 4 5 7 6
Mouse h.y.m 0 3 8 5

Rat h.y.r m.r 0 9 7
Dog h.z.x.d m.y.z.x.d r.y.z.x.d 0 2
Cat h.z.x.c m.y.z.x.c r.y.z.x.c d.c 0

Human

Dog

Cat

Mouse

Rat

d

c
x

h
z m

y
r

Goal: 
Minimize discrepancy between observed distances and tree-based distances

Map distances Dij

to a tree
Tree implies

a distance matrix
Mij

min Σij (Dij-Mij)2



4. Tree-building algorithms

Mapping a distance matrix to a tree



4a: UPGMA (aka. Hierarchical Clustering)

Initialization:
Assign each xi into its own cluster Ci

Define one leaf per sequence, height 0

Iteration:
Find two clusters Ci, Cj s.t. dij is min
Let Ck = Ci ∪ Cj
Define node connecting Ci, Cj, 

& place it at height dij/2
Delete Ci, Cj

Termination:
When two clusters i, j remain, 

place root at height dij/2

1 4

3 2 5

1 4 2 3 5

(Unweighted Pair Group Method with Arithmetic mean)



Ultrametric Distances & UPGMA

UPGMA is guaranteed to build the correct tree if distance is 
ultrametric

Proof:
1. The tree topology is unique, given that the tree is binary
2. UPGMA constructs a tree obeying the pairwise distances

1 4 2 3 5



Weakness of UPGMA
Molecular clock assumption:

implies time is constant for all species

However, certain species (e.g., mouse, rat) evolve much faster

Example where UPGMA messes up:

2
3

4
1

1 4 32

Correct tree UPGMA



4b. Neighbor-Joining

• Guaranteed to produce the correct tree if distance is additive
• May produce a good tree even when distance is not additive

Step 1: Finding neighboring leaves

Define

Dij = dij – (ri + rj)

Where
1

ri = –––––Σk dik
|L| - 2

Claim: The above “magic trick” ensures that Dij is minimal iff i, j are neighbors
Proof: Beyond the scope of this lecture (Durbin book, p. 189)

1

2 4

0.1 0.1

0.4 0.4

3

0.1



Algorithm: Neighbor-joining
Initialization:

Define T to be the set of leaf nodes, one per sequence
Let L = T

Iteration:
Pick i, j s.t. Dij is minimal
Define a new node k, and set dkm = ½ (dim + djm – dij) for all m ∈ L

Add k to T, with edges of lengths dik = ½ (dij + ri – rj)
Remove i, j from L; 
Add k to L

Termination:
When L consists of two nodes, i, j, and the edge between them of length dij



5. Alignment-based algorithms

Parsimony (set-based)
Parsimony (Dynamic Programming)

Maximum Likelihood



5a. Parsimony
• One of the most popular methods

Idea:
Find the tree that explains the observed sequences with a minimal 
number of substitutions

Two computational sub-problems:

1. Find the parsimony cost of a given tree (easy)

2. Search through all tree topologies (hard)



Parsimony Scoring 

Given a tree, and an alignment column
Label internal nodes to minimize the number of required substitutions

Initialization:
Set cost C = 0; k = 2N – 1

Iteration:
If k is a leaf, set Rk = { xk[u] }

If k is not a leaf,
Let i, j be the daughter nodes;
Set Rk = Ri ∩ Rj if intersection is nonempty
Set Rk = Ri ∪ Rj, and C += 1, if intersection is empty

Termination:
Minimal cost of tree for column u, = C



Example

A B B

{A, B}
C+=1

{A, B}
C+=1

{A}

{A} {B} {A} {B}
A



Traceback:

1. Choose an arbitrary nucleotide from R2N – 1 for the root

2. Having chosen nucleotide r for parent k, 
If r ∈ Ri choose r for daughter i
Else, choose arbitrary nucleotide from Ri

Easy to see that this traceback produces some assignment of cost C

Traceback to find ancestral nucleotides



Example

A B A B

{A, B}

{A, B}

{A}

{A} {B} {A} {B}

A B A B

A

A

A
x

x

A B A B

A

B

A

x

x

A B A B

B

B

B

x
x

Accessible to traceback

Still optimal, but 
not found by traceback



5b. Parsimony with dynamic programming

M R B1 H B2 D B3
A 0 1 1 0 1 1 2
C 1 1 2 1 3 1 4
G 1 0 1 1 2 0 2
T 1 1 2 1 3 1 4

• Each cell (N,C) represents the 
min cost of the subtree rooted at 
N, if the label at N is C.

• Update table by walking up the 
tree from the leaves to the root, 
remembering max choices. 

• Traceback from root to leaves to 
construct a min cost assignment

A G A G
Mouse Rat Human Dog

B1

B2

B3



5c. Maximum Likelihood Methods
Input: Proposed topology T
Output: Prob. that proposed tree gave rise to observed data
Search: Heuristic MCMC search for max likelihood tree.  

B^,T^ = argmaxB,T P(D,B,T)
= argmaxB,T P(D|B,T) P(B,T)

Likelihood P(Data|BranchLengths,Topology)
Prior P(B,T): typically uniform/can use to guide search

Iterate: Iterate over proposed topologies.  
• Given current topology T, branch lengths B: 

– Propose many alternative (T’,B’), by modifying existing T T’, 
and inferring branch lengths B’ that maximize P(D|B’,T’)

– Evaluate P(D|B,T) and P(D|B’,T’)
– Select one T’ at random based on increase in likelihood

• Heuristics for proposing new topology T’
– Nearest-neighbor interchange, subtree cut-and-paste, rotations



Advantages/disadvantages of ML methods
• Advantages:

– Are inherently statistical and evolutionary model-based.
– Usually the most ‘consistent’ of the methods available.
– Can be used for character (can infer the exact substitutions) 

and rate analysis.
– Can be used to infer the sequences of the extinct (hypothetical)

ancestors.
– Can help account for branch-length effects in unbalanced trees.
– Can be applied to nucleotide or amino acid sequences, and 

other types of data.

• Disadvantages:
– Are not as simple and intuitive as many other methods.
– Are computationally very intense (Iimits number of taxa and 

length of sequence).
– Like parsimony, can be fooled by high levels of homoplasy.
– Violations of the assumed model can lead to incorrect trees.



Bootstrapping to get the best trees

Main outline of algorithm

1. Select random columns from a multiple alignment – one column 
can then appear several times

2. Build a phylogenetic tree based on the random sample from (1)

3. Repeat (1), (2) many (say, 1000) times

4. Output the tree that is constructed most frequently



Summary
• Basics of phylogeny

– Characters, traits, nodes, branches, lineages
– Gene trees, species trees

• Modeling sequence evolution
– Turning sequence data into distances
– Probabilistic models of nucleotide divergence
– Jukes-Cantor 1-parameter model, Kimura 2-parameter model

• From distances to trees
– Ultrametric, Additive, General Distances
– UPGMA, Neighbor Joining, guarantees and limitations
– Least-squared error, minimum evolution

• From alignments to trees
– Parsimony methods: set-based vs. dynamic programming
– Maximum likelihood methods
– MCMC and heuristic search



Extra Time?



Recitation tomorrow: Gene vs. Species evolution
• Genes can start diverging before species separate

– Genetic polymorphism within population could exist
– After divergence, forms evolve differently in each species
– Gene divergence could predate species diverge
– Gene tree topology could be misleading

A

B

X Y Z

A
B

X Y Z

• Solution:  Use multiple genes to infer a species tree



Phylogenomics

• Traditional phylogenetics focused on uniform trees
– Any topology makes a good story

• Phylogenomics imposes additional constraints
– Gene trees evolve inside species trees
– Errors imply large-scale duplications and losses

Many species
One gene

One species
Many genes

Many species
Many genes

h1r1 c1c2 h2 h1 h2h3h4h5HumanChimpMouseRat

Species Tree Phylogenomics Duplication Tree

Figure by MIT OpenCourseWare. 



Extending traditional max likelihood methods

• Traditional max likelihood (phylogenetics)

B^,T^ = argmaxB,T P(D,B,T)
argmaxB,T P(D|B,T) P(B,T)

• Extended likelihood function (phylogenomics)

B^,T^ = argmaxB,T P(D,B,T,R|E)
argmaxB,T P(D|B,T) P(B|T,R,E)P(R|T,E)P(T|E)

Likelihood of data given
proposed branch lengths

Likelihood of proposed branch 
lengths (given species evolution)



Evaluation: Large increase in accuracy

• Simulated data: 
– Run (generative) model
– 1 dup event many dup 

genes
– Method robust to dup/loss

Syntenic regions: 
Increasing number of species
Diverse lineages

Great increase in accuracy

Length correlation: 
Maximally use data
More data closer to truth

Still depends on gene length
But much higher than other 
methods

R
ec

on
st

ru
ct

io
n 

ac
cu

ra
cy

0

0.2

0.4

0.6

0.8

1

Gene length (bp)

0 500 1000 1500 2000 2500 3000

SPIML

DNAPARS
PHYML

SPIDIR

BIONJ

MrBayesMrBayes

Figure by MIT OpenCourseWare. 


	Goals for today
	Open questions (?)
	Inferring Phylogenies: Traits and Characters
	Traits – as many as we have letters in DNA
	From physiological traits to DNA characters
	2. Modeling evolution
	Measuring evolutionary rates
	‘Evolving’ a nucleotide under random model
	Modeling Nucleotide Evolution
	Modeling Nucleotide Evolution
	Modeling Nucleotide Evolution
	Modeling Nucleotide Evolution
	Distance between two sequences
	3. From distances to trees
	3a. Ultrametric distances
	3b. Additive distances
	3c. General distances
	Distance matrix  Phylogenetic tree
	4. Tree-building algorithms
	4a: UPGMA (aka. Hierarchical Clustering)
	Ultrametric Distances & UPGMA
	Weakness of UPGMA
	4b. Neighbor-Joining
	Algorithm: Neighbor-joining
	5. Alignment-based algorithms
	5a. Parsimony
	Parsimony Scoring 
	Example
	Traceback to find ancestral nucleotides
	Example
	5b. Parsimony with dynamic programming
	5c. Maximum Likelihood Methods
	Advantages/disadvantages of ML methods
	Bootstrapping to get the best trees
	Summary
	Extra Time?
	Recitation tomorrow: Gene vs. Species evolution
	Phylogenomics
	Extending traditional max likelihood methods
	Evaluation: Large increase in accuracy

