
MIT OpenCourseWare
http://ocw.mit.edu

6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

1

6.047/6.878 Lecture 10

Molecular Evolution and Phylogenetics

October 8, 2008

Notes from Lecture

Error in slide 13: Nsubstitions < Nmutations •

• Next 2 lectures given by guest speakers

The section on Maximum Likelihood Methods is left for recitation •

Motivations

Evolution by natural selection is responsible for the divergence of species populations through three
primary mechanisms: populations being altered over evolutionary time and speciating into separate
branches, hybridization of two previously distinct species into one, or termination by extinction.
Given the vastness of time elapsed since life first emerged on this planet, many distinct species have
evolved which are all related to one another; phylogenetics is the study of evolutionary relatedness
among species and populations. Traditional phylogeny asks how do species evolve and before
the advent of genomic data mostly relied on physiological data (bone structure from fossils, etc).
We are interested in tackling phylogenetics from a different perspective; analyzing DNA sequence
data in order to determine relationships between and among species. At the core, we would like
to detect evidence of natural selection in populations. This is an increasingly important area of
research in computational biology and is starting to find commercial applications in the realm of
personal genomics: it was recently announced that a joint MIT & Harvard affiliated company was
established to sequence individual genomes for $5000 (other private companies including “23 and
me,” “deCODEme,” are already doing this.

We will formulate this biological problem in computational terms by studying two probabilistic
models of divergence: Jukes-Cantor & Kimura. Two purely algorithmic approaches (UPGMA &
Neighbor-Joining) will be introduced to build species or gene trees from these relatedness data (the
distinction between the species & gene trees is explained below).

Among the many open problems in phylogenetics that we can currently address with genomics
are how similar two species are, what migration paths early humans took when they first left the
African continent by studying variations in identical genes of a number of local tribes around the
world (The National Genographic Project is one such example), and determining our closest living
cousins (chimpanzees or gorillas?), among many others. Many open questions in evolutionary
biology have already been answered by genomnic phylogenetics (a major recent one being the
revelation that the closest living relative of the whale is the hippopotamus).

1

Information in phylogenetics is best represented using trees that succinctly show relationships
among species or genes. There are a number of important issues regarding inferring phylogenies
when modeling evolution with trees that one should be aware of:

• nodes linking branches (exact type of common ancestors)

• meaning of branch lengths (time scaled or not)

• type of splitting event at branches (usually binary)

As an aside relating to the last bulleted point, Professor Pavel Pevzner of UCSD (author of our
class textbook on Bioinformatic Algorithms) mentioned in his recent talk at MIT that the order
of convergence (are humans closer to dogs or mouse?) may require a trifurcation model (split in
three ways) instead.

It is important to note that gene & species divergence are two distinct events. The same gene
(or slight variations thereof) can be found in different species (organisms that cannot interbreed).
To think about it another way, a species tree is a special case of a gene tree, consisting of an
orthologous sequence of the same common gene. Moreover, in a species tree, we can have gene flow
between the different branches of the tree. If every “leaf” is an organism, it is a species tree. A
gene tree captures both speciation & duplication events with the length between the root and the
various leaves of the tree being a measure of the number of mutations between the two. The level
of tree complexity (branching lengths & number) dictates what types of algorithms to use. In this
class we focus on sequence comparison to develop gene & species trees.

There are many advantages of using genomes in phylogenetics. A major one being the vast
amount of information we have access to: consider for a moment that for every position in the
genome, particularly individual amino acid positions within the protein sequence, lies a corre­
sponding trait. A small number of traits is usually used to assemble species trees, for instance
in traditionaly phylogenetics (before the advent of genomic data), one could compare the panda
skeletal structure with that of bears & raccoons. The underlying premise in creating trees from
traits is the parsimony principle: find a tree that best explains the set of traits in a minimum
number of changes. Unfortunately, there are also a number of complications having to do with
the fact that traits are typically ill behaved: back mutations are frequent (nails becoming short,
then long and finally back to short), inaccessibility to ancestral sequences and difficulties in corre­
lating substitution rate with time. With the regards to back mutations, even though evolution is
traditionally thought of as divergent always acting to increase entropy, there are rare instances of
convergent evolution (or homoplacy). Homoplacy is the phenomenon where two separate lineages,
completely independent of one another, undergo the same changes that lead to their convergence.
It is a strictly random process that has not infrequently been observed in nature.

To take the human population as an example, the mutation rate within the human genome
since our species left Africa is comparable to a phylogenetic event. The mutations are infrequent,
roughly 1000 mutations (single nucleotide polymorphisms or SNPs) in the total 3 billion nucleotide
genome. This is why producing a map of the human family tree can even be undertaken given the
manageability of such complexity.

How are genes produced? There are two main mechanisms: 1) duplication: new versions of
old genes (most frequent) and 2) de novo genes: intronic (non-coding) segements or regulatory
connection of sequences become coding (hi-jacking of nonfunctional nucleotides does happen but
at a much lower rate).

2

� � � �

2

We will study three types of trees: cladogram, phylogram and ultrametric. The three kinds of
trees associate different meanings to the branch lengths, in order they are: no meaning, genetic
change and elapsed time. Species with much shorter lifespans and higher reproduction rates will
tend to show much larger genetic changes (cf. mouse and human genes). Tree building methods can
be constructed by decoupling the notion of the algorithm used and the definition of the optimality
condition. We will need to think carefully about what we choose as an optimality condition and
how well an algorithm reaches the optimality condition. As an example, clustering algorithms
do not have an optimality criteria (they don’t maximize/minimize an objective function). In
computationally biology, we are faced with an dilemma: whether to design an algorithm that
does the right thing or whether to design a more suitable model (e.g., how frequently changes
observed in a sequence can be used to infer a distance to another sequence).

Modeling Evolution

We need a method to measure evolutionary rates so that a distance matrix can be constructed
before we can develop a tree. A distance matrix will allow us to turn a set of sequences into a set
of pairwise distances between sequences. Let’s focus on two types of single nucleotide mutations:
transitions (A ¡-¿ G, C ¡-¿ T) or transversions (A ¡-¿ T, G ¡-¿ C) happening one at a time. We
consider two stationary Markov models represented by a nucleotide substitute matrix that assume
nucleotides evolve independently of one another.

The Jukes-Cantor approach assumes a constant rate of evolution assigning one rate to self-
mutation (A -¿ A, etc) and another to cross mutation (A -¿ one of C,G,T). The Jukes-Cantor
AGCT substitution matrix: ⎞⎛

S =

⎜⎜⎝

r s s s
s r s s
s s r s
s s s r

⎟⎟⎠

For short times, the evolutionary rate is constant: r = 1 − 3α� and s = α�.
the rate is a function of time: r = 0.25 1 + 3e−4αt and s = 0.25 1 − e−4αt . The Kimrua model
goes one further and takes into account that transitions are more frequent than transversions. The
Kimura AGCT substituation matrix:

For longer times,

⎞⎛

S =

⎜⎜⎝

r s u u
s r u u
u u r s
u u s r

⎟⎟⎠

where s = 0.25(1 − e−4βt), u = 0.25(1 + e−4βt − e−2(α+β)t), and r = 1 − 2s − u.

From distances to trees

Given our generative Markov models and corresponding (time-dependent) substitution matrices,
we are now ready to determine a distance matrix. The elements of this distance matrix dij are
a measure of the distance of two well aligned sequences. One possibility is to define the distance

3

3

matrix (dij) as the fraction of sites (f) where two sequences xi and xj are mismatched: dij =
− log (1 − 4f/3). This model blows up when f = 0.75 which places a threshold on the amount of
mismatch between two sequences.

To then use this distance matrix to measure actual distances between any pair of sequences (ie.
to construct a tree), there are two standard approaches: 1) ultrametric distances infer equidistant
paths from any leaf to the root while 2) additive distances dictate that all pairwise distances are
obtained by traversing a tree. Ultrametric trees are rarely valid since it assumes uniform rate of
evolution while additive distances are a less restrictive model. In practice, distance matrices is
neither ultrametric nor additive.

The distance matrix and tree duality also means that distances can be inferred by traversing
tree. If ultrametric distances are used, we have a guarantee of finding the correct tree by minimizing
the discrepancy between observed distances and tree-based distances. On the other hand, if additive
distances are used, neighbors are guaranteed to find the correct tree. The tree building algorithm
can then be thought of fitting data to constraints.

4 Tree building algorithms

4.1 UPGMA

UPGMA (Unweighted Pair Group Method with Arithmetic Mean) is the simplest example of a
tree-building algorithm. It involves a hierarchical clustering algorithm that begins at the leaves
of the tree and works it way up to the root. As input, it takes a distance matrix and produces
an ultrametric tree (ie. in accordance with the molecular clock hypothesis of equal evolutionary
rates among species). Only when the input distance matrix is ultrametic is the UPGMA algorithm
guaranteed to form the correct tree. If, on the other hand, the distance matrix is additive, there is
no guarantee that the pairwise branch distances equal those specified in the distance matrix.

ALGORITHM:

1. Begin by initializing all sequences each to its own cluster. These will form the leaves of the
tree.

2. Find the pair of sequences with minimum distance from the distance matrix D. This pair
forms the first cluster, and we can draw the first part of the tree by linking the pair. (example:
from D, we find seqA and seqB have the minimum distance of 10. We draw the tree by linking
seqA and seqB, with branch length of 5 (hence a total distance of 10 between them)).

3. Update matrix D: A new row and column representing seqAB is added to D. The distance
between seqAB and another seqC would be 1

2(dAC + dBC). Remove the rows and columns
associated with seqA and seqB. Note, overall, the matrix has shrunk by 1 row and 1 column.
From this point on, we can completely forget about seqA, seqB, and assume we just have
seqAB.

4. Repeat steps 2 and 2 until matrix D is empty

4

3
4

�

4.2 Neighbor-Joining

The more sophisticated N-J algorithm is used to generate phylogram trees in which branch lengths
are proportional to evolutionary rates. The N-J algorithm is guaranteed to produce the correct tree
if the input distance matrix is additive and may still produce a good tree even when the distance
matrix is not additive.

ALGORITHM:

1. Make a new matrix M from the distance matrix D with the same dimensions:

k Dik + Djk
Mij = Dij −

N − 2

where N is the number of sequences. This is the adjusted distance metric, which ensures Mij

is minimal iff i and j are neighbors (see proof in Durbin, p.189).

2. (similar to UPGMA Step 2) Find the pair of sequences with minimum distance from the new
distance matrix M . This pair forms the first cluster, and we can draw the first part of the tree
by linking the pair. (example: from M , we find seqA and seqB have the minimum distance.
We draw the tree by linking seqA and seqB, via new node U . The branch length from A to � P �
U is calculated as: DAU =
 1

2 DAB + k DAk +DBk
N−2 . Also, DBU = DAB − DAU).

3. (similar to UPGMA Step 3) Update matrix D. A new row and column representing node U

is added to D. The distance between U and another seqC would be
 (dAC + dBC − dAB).

Note, overall, the matrix has

1
2

Remove the rows and columns associated with seqA and seqB.

shrunk by 1 row and 1 column. From this point on, we can completely forget about seqA
and seqB, and assume we just have node U .

4. Repeat steps 1 thru 3 until matrix D is empty.

4.3 Parsimony

Another approach to building trees is parsimony; a method that doesn’t rely on distance matri­
ces but instead on sequence alignments. Parsimony will find the tree that explains the observed
sequences with the minimal number of substitutions. The algorithm entails two computational sub­
problems: 1) finding the parsimony cost of a given tree and 2) searching through all tree topologies.
The first sub-problem is straightforward while the second is computationally very challenging and
best approached with Monte Carlo methods. As there is no closed form solution and hence no opti­
mality criteria while searching through all topologies, a heuristic search is appropriate. Parsimony
uses dynamic programming in scoring and traceback to determine ancestral nucleotides.

4.3.1 Scoring

The parsimony scoring algorithm is akin to dynamic programming as it makes local assignments
at each step: penalizing sequence mismatches while assigning no score for sequence matches.

• Initialization: Set cost C = 0; k = 2N − 1

5

� �

Iteration: •

If k is a leaf, set Rk = xk[u]
If k is not a leaf,

Let i, j be the daughter nodes;
Set Rk = Ri ∩ Rj if intersection is nonempty
Set Rk = Ri ∪ Rj , and C += 1, if intersection is empty

Termination: Minimal cost of tree for column u = C•

4.3.2 Traceback

The traceback routine to find ancestral nucleotides involves finding a path through the tree from
the leaf nodes to an ancestral nucleotide (that may or may not lead to the root of the tree). It can
be summarized as follows:

• If the intersection of two sets (A and B) is empty, ancestor is A or B with equal cost

• If the intersection of two sets is non-empty, ancestor is intersection with minimal cost

This method determines a non-unique path with minimum assignment of substitutions for a
given tree topology given hidden internal/intermediate nodes (that may correspond to extinct
species).

4.3.3 Bootstrapping

A shortcut to building trees based on parsimony is to build trees using only one column of the
multiple sequence alignment matrix. If repeated many times and a histogram tabulated of the
particular trees constructed, the most likely tree constructed can be easily found. The advantage
to such an approach is obvious: reduced complexity at the expense of accuracy.

4.4 Maximum Likelihood

Maximum likelihood methods combine statistical models with known evolutionary observed data.
They can be used to predict a host of interesting and realistic features - character and rate analysis,
sequences of (hypothetical) extinct species - but do so at the expense of increased complexity.

6

