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Regulatory Motifs

Find promoter motifs associated with co-regulated or
functionally related genes




Motifs Are Degenerate

Sugar phosphate
backbone

 Protein-DNA interactions

— Proteins read DNA by “feeling”
the chemical properties of the
bases

— Without opening DNA (not by
base complementarity)

* Sequence specificity
— Topology of 3D contact dictates
sequence specificity of binding

— Some positions are fully
constrained; other positions are
degenerate

— “Ambiguous / degenerate”
positions are loosely contacted
by the transcription factor

Figure by MIT OpenCourseWare.



Other “Motifs”

« Splicing Signals
— Splice junctions
— Exonic Splicing Enhancers (ESE)
— Exonic Splicing Surpressors (ESS)

e Protein Domains
— Glycosylation sites
— Kinase targets
— Targetting signals

* Protein Epitopes
— MHC binding specificities



Essential Tasks

Modeling Motifs
— How to computationally represent motifs

Visualizing Motifs
— Motif “Information”

Predicting Motif Instances
— Using the model to classify new seguences

Learning Motif Structure
— Finding new motifs, assessing their quality



Modeling Motifs



Cconsensus Sequences

Useful for
publication

IUPAC symbols
for degenerate
sites

Not very amenable
to computation

CCCATTGTTCTC

TTTCTGGTTCTC

TCAATTGTTTAG

CTCATTGTTGTC

TCCATTGTTCTC

CCTATTGTTCTC

TCCATTGTTCGT

CCAATTGTTTTG

CHATTGTTCTC

Figure by MIT OpenCourseWare.

Nature Biotechnology 24, 423 - 425 (2006)



Probabilistic Model

1

CCCATT

TTTCTG

TCAATT

CTCATT

TCCATT

CCTATT

TCCATT

CCAATT

Figure by MIT OpenCourseWare.

Count frequencies

Add pseudocounts

Ml I\/IK
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Position Frequency
Matrix (PFM)



Scoring A Segquence

Score = log
P(S|B)
PFM
dl2(114]1.1].1
21.21.21.215].1
41514 1.2]1.2].1
Sl1.1l1.2(.21.2].7

O 0 >

To score a sequence, we compare to a null model

P(S|PFM) 1o ﬁR(Si | PEM)

L7 p(s 1B)

Background DNA (B)
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Scoring a Sequence

[———"> Scan direction

1/2]3 4|56 MATCH

-5|-8/1]-1]4]0 Yes
o -2 ey 0 |-3|2 > threshold

-1J4-2 50 No
JE A NO MATCH

- QO >
N
N

11-3|-7H8
2+4+2-3+3-3%5

Courtesy of Kenzie Maclsaac and Ernest Fraenkel. Used with permission. Maclsaac, Kenzie, and Ernest Fraenkel.
"Practical Strategies for Discovering Regulatory DNA Sequence Motifs." PLoS Computational Biology 2, no. 4 (2006): e36.

Common threshold = 60% of maximum score

Maclsaac & Fraenkel (2006) PLoS Comp Bio



Visualizing Motifs — Motif Logos

Represent both base frequency and conservation at each

position
FY
! g
\ \
Height of letter proportional Height of stack proportional

to frequency of base at that position to conservation at that position



Information

Motif Information

The height of a stack is often called the motif information at
that position measured in bits

|

Motif Position Information =2— »°  —p, log p,

b={AT,G,C}

Why is this a measure of information?



Uncertainty and probability

Uncertainty is related to our surprise at an event

“The sun will rise tomorrow” Not surprising (p~1)

“The sun will not rise tomorrow”  Very surprising (p<<1)

Uncertainty is inversely related to probability of event



Average Uncertainty

Two possible outcomes for sun rising

A “The sun will rise tomorrow” P(A)=p,

B “The sun will not rise tomorrow”  P(B)=p,

What is our average uncertainty about the sun rising

= P(A)Uncertainty(A) + P(B) Uncertainty(B)
=—p1 IOg pl_ p2 Iog p2
:—Z p. log P. =Entropy




Entropy

Entropy measures average uncertainty

Entropy measures randomness

H(X)=-)_pilog, p

If log is base 2, then the units are called bits



Entropy versus randomness

Entropy

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Entropy is maximum at maximum randomness

0O 01 02 03 04 05 06 07 08 09 1

P(heads)

Example: Coin Toss

P(heads)=0.1 Not very random
H(X)=0.47 bits

P(heads)=0.5 Completely random
H(X)=1 bits



Entropy Examples

P(x)

P(x)

1
0.9
0.8

08 H (X ) =—[0.25l0g(0.25) + 0.2510g(0.25)

+0.2510g(0.25) + 0.25l0g(0.25)]

0.3

0

0.9
0.8
0.7
0.6

H(X)=-[0.1log(0.1) + 0.1l0og(0.1)
+0.1log(0.1) + 0.7510g(0.75)]
=0.63 bits

0.5
0.4
0.3
0.2
0.1




Information Content

Information 1s a decrease In uncertainty

Once | tell you the sun will rise, your uncertainty about
the event decreases

Information = Hbefore(x) ) Hafter(x)

Information is difference in entropy after receiving information



Motif Information

Motif Position Information = 2 - Z —p, log p,
/ b={AT,G,C} l
Hbackground(x) Hmotif_i(X)
Prior uncertainty about Uncertainty after learning it is
nucleotide position i in a motif
= =
Q os Q os I
a1 1 1 | e e e
A T G C A T G C
H(X)=2 bits H(X)=0.63 bits

Uncertainty at this position has been reduced by 0.37 bits



Motif Logo

N\ O

Conserved Residue Little Conservation
Reduction of uncertainty Minimal reduction of
of 2 bits uncertainty



Background DNA Frequency

The definition of information assumes a uniform background DNA
nucleotide frequency

What if the background frequency is not uniform?

(e.g. Plasmodium)

. Hbackground(x) . Hmotif_i(X)
S S
o os Q o
4 1 -
A T G C A T G C
H(X)=1.7 bits H(X)=1.9 bits
Motif Position Information = 1.7 - Z —p, 109 p, =-0.2bits
b={A,T,G,C}

Some motifs could have negative information!



A Different Measure

Relative entropy or Kullback-Leibler (KL) divergence

Divergence between a “true” distribution and another

- I:)moi (I)
DKL (Pmotif ” I:)background) = Z I:)motif (I) IOg -

/ \ I={A,T.,G,C} I:)background (I)

“True” Distribution Other Distribution

D, is larger the more different

I:)motif s from I:)background



Comparing Both Methods

Information assuming
uniform background
DNA

KL Distance assuming
20% GC content
(e.g. Plasmodium)



Online Logo Generation

lEaLoco

Wersion 2.8.2 (2005-09-08)

- about - create - examples -

{(= WebLogo 3: Public Beta)

References

Crooks GE, Hon &, Chandonia Ji, Brenner SE WeblLogo:
A sequence logo generator,
Genome Research, 14:1188-1190, (2004) [Full Text ]

Schneider TD, Stephens RM. 1990, Sequence Logos: A
Mew Way to Display Consensus Sequences. Muclkic Aclds
Fes. 186097-6100

Introduction

WebLogo is aweb based application designed
to make the generation of sequence logos as
easy and painless as possible. Click here to

create your own sequence logos. N o
4 a :
Sequence logos are a graphical representation of ga D| A L',;L-\.-- "Y
an amino acid or nucleic acid multiple sequence FEELGErvrYe] b
P 4 BRrRCTEEEE2800E

alignment developed by Tom Schneider and Mike e T T L T
Stephens. Each logo consists of stacks of
symbols, one stack for each position in the

sequence. The owerall height of the stack

indicates the sequence conservation at that

position, while the height of symbols within the stack indicates the relative frequency of each
amino or nucleic acid at that position. In general, a sequence logo provides a richer and more
precise description of, for example, a binding site, than would & consensus sequence.

http://weblogo.berkeley.edu/

| (select example) j C2H2 enolLOGOS form

matrix or aligtnment input

1o input parameters set |

enoL QG OS parameters submit (selectdefaults) =

welght type Im energy units m
logo title l— logo plot method IW
z-axis label I— scale letters by prob. [ON | wis|asis x|
y-axis label Il:nts— log baze ﬂ
¥-2xs MaR |2_ il info ITFL, reverse-comp | OFF =
x-als, - ads m m column aspect ratio l3—

fetters red green blue %GC [(select%GC) =
[& 0.0 0 {0.0 |_
o o0 [oo [08
. [os [os [0
T s 00 o7
@‘ Reference UCSD mirror

Bupported by the National Science Foundation

http://biodev.hgen.pitt.edu/cgi-bin/enologos/enologos.cgi




Finding New Motifs

Learning Motif Models



A Promoter Model

VVVV

Length K
4 % A
N —
] |
I |
] |
/ \
Motif Background DNA
M, My
A 1211141 3 A:0.25 -
C 21.21.2|.2].5 4 T:0.25 -
G |a|s5|a]2|2]2 G025-
T [3]|1]2|2]2]a C:0.25 -
AN
P(SIM) P(SIB)

The same motif model in all promoters



Probability of a Sequence

Given a sequence(s), motif model and motif location

1 60 65 100

ATATGC

\\\

100
P(Seq | Mstart =10, Model) = HP(S |B)HP Seess IM)] [ P(S; IB)

=66

M, My

S; = nucleotide at position i in
the sequence

O 0>

3
4
2
1

[T I OIS I

(O IO [ CI N

N RN R

Rlol ]

w|lr»|N] PR




Parameterizing the Motif Model

Given multiple sequences and motif locations but no motif model

E— >
I | >
E— | >
N | >
/ Ml MG
AATGCG A 3/4
ATATGG Count Frequencies ~C ETC
ATATCG Add pseudocounts ] G 3/4
GATGCA T




Finding Known Motifs

Given multiple sequences and motif model but no motif locations

P(SGuinaonIMotiT) /\x
| | /\ window | {

1

M |

>
Z

Calculate P(Seq,,.q4.,,/Motif) for every starting location



Motif Position Distribution Z;

e the element Zij of the matrix / represents the
probability that the motif starts in position j in sequence |

1 2 3 4

seql 0.1 0.1 0.2 0.6
ZZ _ seg2 0.4 0.2 0.1 0.3
~ seq3 0.3 0.1 0.5 0.1
seg4 0.1 0.5 0.1 0.3
Some examples:
RonAEar
Zl
two
candidates
ZZ

ZB A Wi nbe||g

Z4 uniform




Calculating the Z Vector
P(S | Zij =1, M)P(Zij =1)
P(S) (Bayes’ rule)

P(Z, =1|S,M) =

P(Z, =1]S,M) = KP(S|Z|j_1 M)P(Z=1
Z P(S|Zij=1M)P@&i{=1)

P(S|Zij=1M

P(Zijzlls’M):L—Kﬂ( 2] )
> P(S|Zij=LM)
k=1

Assume uniform priors (motif equally likely to start at any position)



Calculating the Z Vector - Example

X,=|G|C T|G|T A G

©
1
—1 OO >

0.25 ;
0.25 ;
0.25 ;
0.25 ;

O

N WhPELPE

Z., =[0.3x0.2x0.1

21 ;
2 |0.

% 0.25%x0.25%x0.25%x0.25

Z., =0.25x

 then normalize so that

0.4x0.2x0.6

N O1T DN

0.
0

R OFLDNW

a?

x0.25%x0.25%x0.25

L-W+1

» Z, =1

j=1



Discovering Motifs

Given a set of co-regulated genes, we need to discover
with only sequences

We have neither a motif model nor motif locations
Need to discover both

How can we approach this problem?



Expectation Maximization (EM)

Remember the basic ideal!
1.Use model to estimate distribution of missing data

2.Use estimate to update model
3.Repeat until convergence

Model Is the motif model

Missing data are the motif locations



EM for Motif Discovery

VVVV

1. Start with random motif model

2. E Step: estimate probability of
motif positions for each sequence

3. M Step: use estimate to update
motif model

4. lterate (to convergence)

[
»

—|OO>/
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R B
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—O0>

wl > | R
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he M-Step Calculating the Motif Matrix

M, Is the probability of character c at position k
« With specific motif positions, we can estimate M_,:

Counts of c at pos k Pseudocounts

In each motif position \
M . nC,k —I_ dC,k
c.k
Z nb,k T db,k
b

e But with probabilities of positions, Z.

= 2 27

sequences S; j|S c

jy WE average.



MEME

« MEME - implements
EM for motif
discovery in DNA
and proteins

« MAST - search
sequences for
motifs given a
model

© MEME | MAST

Multiple Em for Motif Elicitation t‘Moﬁf Alignment & Search Tool

THE MEME/MAST SYSTEM

Motif Discovery and Search

Version 3.5.4

The MEME/MAST system allows you to

-

. discover motifs thighty conserved regions) in groups of related DNA or protein sequences using MEME and,
. search sequence databases using motifs using MAST.

.

LR

e

e

Authors: The MEMEMAST systern was developed by Timothy Bailey, Charles Elkan, and Bill Noble atthe UCSD Cormputar
Science and Engineering department with input from Michael Gribskow at Purdue University

Publications: MEME and MAST are described in detail in the papers available here.

FAQ: Answers to Frequently Asked Questions about MEME and MAST are given in the GENERAL FAQ.

User Forum: Visit the MEME User Forurmn for online discussions with the MEME support tearm memehers and other MEME
users.

Email support: Contact us if you have guestions that are not answered in the FAQ ar User Forum

Sample Output: You can see sample MEME output or sample MAST output.

Release Notes: Differences hetween the current release of the MEME/MAST systern and earlier releases are described inthe
release notes .

D You can the MEMEMAST software and install it on your own computer. This will allow you to use marny
features that are naot available with the interactive versions of MEME and MAST

License: MEME and MAET are copyrighted software and can be licensed for commetcial use.

Meta-MEME: Meta-MEME combines matif models from MEME into a hidden Markoy model frarmework for use in searching
sequence databases

Developed and maintained n:

THE UNIVERSITY

q'p ?ESCTQI{UI’;I?TSLAND NBLR

=UCcsp SDSC

http://meme.sdsc.edu/meme/




P(Seqg|Model) Landscape

EM searches for parameters to increase P(seqs|parameters)

Useful to think of
P(segs|parameters)
as a function of parameters

~
(7]
e
]
_ g
EM starts at an initial set of o
parameters @ 5 ®

2 I
o

T - - 3] .
And then “climbs uphill” untilit g
. >
reaches a local maximum @ §
Y

o)
Q/‘a rL
m ye!
Gfe/:Z ?a‘a‘(\e

Where EM starts can make a big difference



Search from Many Different Starts

To minimize the effects of local maxima, you should search
multiple times from different starting points

MEME uses this idea

£
Start at many points 3 p
£ ®
]
Run for one iteration 3 ® ®
S
Choose starting point that got &
the “highest” and continue s /
a



The ZOOPS Model

 The approach as we’ve outlined it, assumes that each sequence
has exactly one motif occurrence per sequence; this is the
OOPS model

« The ZOOPS model assumes zero or one occurrences per
sequence

N —
L I
—
— I
N ——




E-step In the ZOOPS Model

 We need to consider another alternative: the ith sequence
doesn’t contain the motif

 We add another parameter (and its relative)

A = prior prob that any position In
a sequence Is the start of a
motif

y=(L-W+1)A = prior prob of a sequence
containing a motif



E-step In the ZOOPS Model

Pr(S, | Z. =1L, M)A
P(Zij :1) — :

PI(S, 1Q =0, M)A-)+ > PI(S, |Z, =L M)A

k=1

 here Qi IS a random variable that takes on O to indicate that
the sequence doesn’t contain a motif occurrence



M-step In the ZOOPS Model

e update p same as before
* update A y as follows

t+1
ﬂ(t+1): 7/(+) 1 - ;

(L -W +1) n(L -W +1) sequences i=1 positions j=1 "

« average of Z" across all sequences, positions



The TCM Model

e The TCM (two-component mixture model) assumes zero
or more motif occurrences per sequence

N —
L I
— I — N —

— I



Likelihood In the TCM Model

 the TCM model treats each length W subsequence
independently

» to determine the likelihood of such a subsequence:

J+W -1
. . assuming a motif
I:)r(Sij ‘ Zij o 11 M ) o I I M Cy .kK—j+1 starts there
k=]
J+W -1

assuming a motif

PF(SU— ‘Zij =0,p)= H P(Ck | B) doesn’t start there
k=]



E-step In the TCM Model

Pr(S, | Z, =L, M)A

7 =
! Pr(Si,j |Zij =0,B)1-1)+ I:)r(Si,j |Zij =1L, M)4

— _ _
— ~

subsequence isn’t a motif subsequence is a motif

 M-step same as before



Gibbs Sampling

A stochastic version of EM that differs from
deterministic EM in two key ways

1. At each iteration, we only update the motif position
of a single sequence

2. We may update a motif position to a “suboptimal”
new position



Gibbs Sampling

“Best”

: p 2 .
Locatlonj— New

LocationL

1. Start with random motif locations and
calculate a motif model

2. Randomly select a sequence, remove its
motif and recalculate tempory model

3. With temporary model, calculate probability of
motif at each position on sequence

4. Select new position based on this distribution

5. Update model and Iterate

VVVV
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Gibbs Sampling and Climbing

Because gibbs sampling does not always choose the best new location
it can move to another place not directly uphill

P(Sequences|paramsl,params?2)
~@
\

o)

Qr, Q m ’\_6‘ 2
@[‘e/:z

pat®™

In theory, Gibbs Sampling less likely to get stuck a local maxima



AllgnACE

 Implements Gibbs
sampling for motif
discovery

— Several enhancements

« ScanAce - look for
motifs in a sequence
given a model

e CompareAce — calculate
“similarity” between two
motifs (i.e. for clustering
motifs)

http://atlas.med.harvard.edu/cgi-bin/alignace.pl



Antigen Epitope Prediction



Antigens and Epitopes

* Antigens are molecules that induce immune system
to produce antibodies

* Antibodies recognize parts of molecules called
epitopes



Genome to “Immunome”

Pathogen genome sequences provide define all proteins
that could illicit an immune response

e Looking for a needle...
— Only a small number of epitopes are typically antigenic

e ...In a very big haystack
— Vaccinia virus (258 ORFs): 175,716 potential epitopes (8-, 9-,
and 10-mers)
— M. tuberculosis (~4K genes): 433,206 potential epitopes
— A. nidulans (~9K genes): 1,579,000 potential epitopes

Can computational approaches predict all antigenic epitopes
from a genome?



Modeling MHC Epitopes

 Have a set of peptides that have been
assoclate with a particular MHC allele

 Want to discover motif within the
peptide bound by MHC allele

« Use motif to predict other potential
epitopes



Motifs Bound by MHCs

e« MHC 1

— Closed ends of grove
— Peptides 8-10 AAs in length
— Motif is the peptide

e MHC 2

— Grove has open ends

— Peptides have broad length
distribution: 10-30 AAs

— Need to find binding motif
within peptides
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