
MIT OpenCourseWare 
http://ocw.mit.edu 


6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution
Fall 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


Motif Discovery

Computational Biology: Genomes, Networks, Evolution

Lecture 9 October 2, 2008



Regulatory Motifs

Find promoter motifs associated with co-regulated or 
functionally related genes



Motifs Are Degenerate

• Protein-DNA interactions
– Proteins read DNA by “feeling”

the chemical properties of the 
bases

– Without opening DNA (not by 
base complementarity)

• Sequence specificity
– Topology of 3D contact dictates 

sequence specificity of binding
– Some positions are fully 

constrained; other positions are 
degenerate

– “Ambiguous / degenerate”
positions are loosely contacted 
by the transcription factor
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Other “Motifs”
• Splicing Signals

– Splice junctions
– Exonic Splicing Enhancers (ESE)
– Exonic Splicing Surpressors (ESS)

• Protein Domains
– Glycosylation sites
– Kinase targets
– Targetting signals

• Protein Epitopes
– MHC binding specificities



• Modeling Motifs
– How to computationally represent motifs

• Visualizing Motifs
– Motif “Information”

• Predicting Motif Instances
– Using the model to classify new sequences

• Learning Motif Structure
– Finding new motifs, assessing their quality

Essential Tasks



Modeling Motifs



Consensus Sequences

Useful for 
publication

IUPAC symbols 
for degenerate 

sites

Not very amenable 
to computation

Nature Biotechnology 24, 423 - 425 (2006) 
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Probabilistic Model
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Scoring A Sequence
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To score a sequence, we compare to a null model
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Scoring a Sequence

MacIsaac & Fraenkel (2006) PLoS Comp Bio

Common threshold = 60% of maximum score

Courtesy of Kenzie MacIsaac and Ernest Fraenkel. Used with permission. MacIsaac, Kenzie, and Ernest Fraenkel.
"Practical Strategies for Discovering Regulatory DNA Sequence Motifs." PLoS Computational Biology 2, no. 4 (2006): e36.



Visualizing Motifs – Motif Logos

Represent both base frequency and conservation at each 
position

Height of letter proportional
to frequency of base at that position

Height of stack proportional
to conservation at that position



Motif Information
The height of a stack is often called the motif information at 

that position measured in bits
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Why is this a measure of information?



Uncertainty and probability

“The sun will rise tomorrow”

“The sun will not rise tomorrow”

Uncertainty is inversely related to probability of event

Not surprising (p~1)

Very surprising (p<<1)

Uncertainty is related to our surprise at an event



Average Uncertainty

A   “The sun will rise tomorrow”

B   “The sun will not rise tomorrow”

P(A)=p1

P(B)=p2

Two possible outcomes for sun rising

1 1 2 2

( )Uncertainty(A) ( )Uncertainty(B)
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What is our average uncertainty about the sun rising 



Entropy

Entropy measures average uncertainty

Entropy measures randomness

If log is base 2, then the units are called bits

2( ) logi i
i

H X p p= −∑



Entropy versus randomness
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Entropy Examples
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Information Content

Information is a decrease in uncertainty

Once I tell you the sun will rise, your uncertainty about
the event decreases

Hbefore(X) Hafter(X)-Information  =

Information is difference in entropy after receiving information



Motif Information

2 -Motif Position Information  =
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Uncertainty at this position has been reduced by 0.37 bits



Motif Logo

Conserved Residue
Reduction of uncertainty 

of 2 bits

Little Conservation
Minimal reduction of 

uncertainty 
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A Different Measure
Relative entropy or Kullback-Leibler (KL) divergence

Divergence between a “true” distribution and another
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Comparing Both Methods

Information assuming
uniform background

DNA 

KL Distance assuming
20% GC content

(e.g. Plasmodium)



Online Logo Generation

http://weblogo.berkeley.edu/ http://biodev.hgen.pitt.edu/cgi-bin/enologos/enologos.cgi



Finding New Motifs

Learning Motif Models



A Promoter Model
Length K
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Probability of a Sequence
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Given a sequence(s), motif model and motif location
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Parameterizing the Motif Model
Given multiple sequences and motif locations but no motif model

A
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G
T

M1 M6M1
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ETC…
AATGCG
ATATGG
ATATCG
GATGCA

Count Frequencies

Add pseudocounts



Finding Known Motifs
Given multiple sequences and motif model but no motif locations

P(Seqwindow|Motif)

window

Calculate P(Seqwindow|Motif) for every starting location



Motif Position Distribution Zij
• the element        of the matrix       represents the 

probability that the motif starts in position j in sequence I
Z

1    2    3    4
seq1  0.1  0.1 0.2  0.6
seq2  0.4  0.2  0.1  0.3
seq3  0.3  0.1  0.5  0.1
seq4  0.1  0.5  0.1  0.3

=Z

ijZ

Z1

uniform

one big winner
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no clearwinner

Z2

Some examples: 

Z3

Z4



1

1

1

1

( | 1, ) ( 1)( 1| , )
( )

( | 1, ) ( 1)( 1| , )
( | 1, ) ( 1)

( | 1, )( 1| , )
( | 1, )

ij

ij L K

k

ij L K

k

P S Zij M P ZijP Z S M
P S

P S Zij M P ZijP Z S M
P S Zij M P Zij

P S Zij MP Z S M
P S Zij M

− +

=

− +

=

= =
= =

= =
= =

= =

=
= =

=

∑

∑

(Bayes’ rule)

Assume uniform priors (motif equally likely to start at any position)

Calculating the Z Vector



Calculating the Z Vector - Example
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0     1    2    3
A  0.25   0.1  0.5  0.2
C  0.25   0.4  0.2  0.1
G  0.25   0.3  0.1  0.6
T  0.25   0.2  0.2 0.1
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• then normalize so that



Discovering Motifs

Given a set of co-regulated genes, we need to discover
with only sequences

We have neither a motif model nor motif locations
Need to discover both

How can we approach this problem?

(Hint: start with a random motif model)



Expectation Maximization (EM)

Remember the basic idea!

1.Use model to estimate distribution of missing data
2.Use estimate to update model

3.Repeat until convergence

Model is the motif model

Missing data are the motif locations



EM for Motif Discovery

1. Start with random motif model

2. E Step: estimate probability of 
motif positions for each sequence

3. M Step:  use estimate to update 
motif model

4. Iterate (to convergence)
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The M-Step Calculating the Motif Matrix

• Mck is the probability of character c at position k
• With specific motif positions, we can estimate Mck:

• But with probabilities of positions, Zij, we average:
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MEME

http://meme.sdsc.edu/meme/

• MEME - implements 
EM for motif 
discovery in DNA 
and proteins

• MAST – search 
sequences for 
motifs given a 
model



P(Seq|Model) Landscape
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EM searches for parameters to increase P(seqs|parameters)

Useful to think of 
P(seqs|parameters)

as a function of parameters

Parameter1 Parameter2

EM starts at an initial set of
parameters  

And then “climbs uphill” until it 
reaches a local maximum

Where EM starts can make a big difference



Search from Many Different Starts
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To minimize the effects of local maxima, you should search
multiple times from different starting points

Parameter1 Parameter2

MEME uses this idea

Start at many points

Run for one iteration

Choose starting point that got
the “highest” and continue



The ZOOPS Model

• The approach as we’ve outlined it, assumes that each sequence 
has exactly one motif occurrence per sequence; this is the 
OOPS model

• The ZOOPS model assumes zero or one occurrences per 
sequence



E-step in the ZOOPS Model
• We need to consider another alternative: the ith sequence 

doesn’t contain the motif
• We add another parameter (and its relative)

λ

λγ )1( +−= WL

prior prob that any position in 
a sequence is the start of a 
motif

prior prob of a sequence 
containing a motif



E-step in the ZOOPS Model
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M-step in the ZOOPS Model

• update p same as before
• update           as follows
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The TCM Model
• The TCM (two-component mixture model) assumes zero 

or more motif occurrences per sequence



Likelihood in the TCM Model
• the TCM model treats each length W subsequence 

independently
• to determine the likelihood of such a subsequence: 
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E-step in the TCM Model
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• M-step same as before

subsequence isn’t a motif subsequence is a motif



Gibbs Sampling

A stochastic version of EM that differs from 
deterministic EM in two key ways

1. At each iteration, we only update the motif position
of a single sequence

2. We may update a motif position to a “suboptimal”
new position



1. Start with random motif locations and 
calculate a motif model

2. Randomly select a sequence, remove its 
motif and recalculate tempory model

3. With temporary model, calculate probability of 
motif at each position on sequence

4. Select new position based on this distribution

5. Update model and Iterate

Gibbs Sampling
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Gibbs Sampling and Climbing
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Because gibbs sampling does not always choose the best new location
it can move to another place not directly uphill

Parameter1 Parameter2

In theory, Gibbs Sampling less likely to get stuck a local maxima



AlignACE

http://atlas.med.harvard.edu/cgi-bin/alignace.pl

• Implements Gibbs 
sampling for motif 
discovery
– Several enhancements

• ScanAce – look for 
motifs in a sequence 
given a model

• CompareAce – calculate 
“similarity” between two 
motifs (i.e. for clustering 
motifs)



Antigen Epitope Prediction



Antigens and Epitopes
• Antigens are molecules that induce immune system 

to produce antibodies
• Antibodies recognize parts of molecules called 

epitopes



Genome to “Immunome”

• Looking for a needle…
– Only a small number of epitopes are typically antigenic

• …in a very big haystack
– Vaccinia virus (258 ORFs): 175,716 potential epitopes (8-, 9-, 

and 10-mers)
– M. tuberculosis (~4K genes): 433,206 potential epitopes
– A. nidulans (~9K genes): 1,579,000 potential epitopes

Can computational approaches predict all antigenic epitopes
from a genome?

Pathogen genome sequences provide define all proteins 
that could illicit an immune response



Modeling MHC Epitopes

• Have a set of peptides that have been 
associate with a particular MHC allele

• Want to discover motif within the 
peptide bound by MHC allele

• Use motif to predict other potential 
epitopes



Motifs Bound by MHCs

• MHC 1
– Closed ends of grove
– Peptides 8-10 AAs in length
– Motif is the peptide

• MHC 2
– Grove has open ends
– Peptides have broad length 

distribution: 10-30 AAs
– Need to find binding motif 

within peptides


	Motif Discovery
	Regulatory Motifs
	Motifs Are Degenerate
	Other “Motifs”
	Essential Tasks
	Modeling Motifs
	Consensus Sequences
	Probabilistic Model
	Scoring A Sequence
	Scoring a Sequence
	Visualizing Motifs – Motif Logos
	Motif Information
	Uncertainty and probability
	Average Uncertainty
	Entropy
	Entropy versus randomness
	Entropy Examples
	Information Content
	Motif Information
	Motif Logo
	Background DNA Frequency
	A Different Measure
	Comparing Both Methods
	Online Logo Generation
	Finding New Motifs
	A Promoter Model
	Probability of a Sequence
	Parameterizing the Motif Model
	Finding Known Motifs
	Motif Position Distribution Zij
	Calculating the Z Vector
	Calculating the Z Vector - Example
	Discovering Motifs
	Expectation Maximization (EM)
	EM for Motif Discovery
	The M-Step Calculating the Motif Matrix
	MEME
	P(Seq|Model) Landscape
	Search from Many Different Starts
	The ZOOPS Model
	E-step in the ZOOPS Model
	E-step in the ZOOPS Model
	M-step in the ZOOPS Model
	The TCM Model
	Likelihood in the TCM Model
	E-step in the TCM Model
	Gibbs Sampling
	Gibbs Sampling
	Gibbs Sampling and Climbing
	AlignACE
	Antigen Epitope Prediction
	Antigens and Epitopes
	Genome to “Immunome”
	Modeling MHC Epitopes
	Motifs Bound by MHCs



