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Today

• Gene Prediction Overview

• HMMs for Gene Prediction

• GHMMs for Gene Prediction

• Genscan



Genome Annotation

Genome Sequence

Protein

RNA

Translation

Transcription



Eukaryotic Gene Structure
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coding segment
complete mRNA
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http://geneprediction.org/book/classroom.html
Courtesy of William Majoros. Used with permission.



Translation

Ribosome

Chain of 
amino 
acids

one amino acid

Anti-codon (3 bases)
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http://geneprediction.org/book/classroom.htmlCourtesy of William Majoros.Used with permission.



Genetic Code
Each amino acid is 
encoded by one or 
more codons.

Each codon
encodes a single 
amino acid.

The third position of 
the codon is the 
most likely to vary, 
for a given amino 
acid.

http://geneprediction.org/book/classroom.html

Figure by MIT OpenCourseWare.
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Gene Prediction as “Parsing”

• Given a genome sequence, we wish to label each 
nucleotide according to the parts of genes
– Exon, intron, intergenic, etc

• The sequence of labels must follow the syntax of 
genes
– e.g. exons must be followed by introns or intergenic not by 

other exons

• We wish to find the optimal parsing of a sequence by 
some measure



Features

A feature is any DNA subsequence of biological 
significance.

For practical reasons, we recognize two broad classes 
of features:

signals — short, fixed-length features

content regions — variable-length features

http://geneprediction.org/book/classroom.htmlCourtesy of William Majoros. Used with permission.



Signals

5’ 3’
E I E I E

Associated with short fixed(-ish) length sequences

5’ Splice Site
(Acceptor)

3’ Splice Site
(Donor)

Start Codon - ATG Stop Codons – TAA, TAG,TGA



Content Regions

Example
• Recall: often multiple codons for each amino acid
• All codons are not used equally

Content regions often have characteristic base composition

5’ 3’
E I E I E

Characteristic higher order nucleotide statistics in coding sequences
(hexanucleotides)

Pexon(Xi | Xi-1, Xi-2, Xi-3, Xi-4, Xi-5)

P(Xi | Xi-1, Xi-2, Xi-3, Xi-4, Xi-5) = P(Xi)



Extrinsic Evidence

Gene

Gene
Prediction 
Algorithms

BLAST Hits

EST
Alignments

HMMer Domains

exonintron

Neurospora crassa (a fungus)



HMMs for Gene Prediction

• States correspond to gene and genomic 
regions (exons, introns, intergenic, etc)

• State transitions ensure legal parses

• Emission matrices describe nucleotide 
statistics for each state



A (Very) Simple HMM

the Markov the Markov 
model:model:

IntergenicIntergenic

ExonExon

Donor GDonor G Acceptor GAcceptor G

IntronIntron

q0
q0

Start
Codon A

Start
Codon A

Start
Codon T

Start
Codon T

Start
Codon G

Start
Codon G

Stop
Codon A

Stop
Codon A

Stop
Codon T

Stop
Codon T

Stop
Codon G

Stop
Codon G

Donor TDonor T Acceptor AAcceptor A

http://geneprediction.org/book/classroom.htmlCourtesy of William Majoros. Used with permission.



A Generative Model

• The initial state is q0

• Choose a subsequent state, 
conditioned on the current state, 
according to ajk=P(qk|qj)

• Choose a nucleotide to emit 
from the state emissions matrix 
ek(Xi)

• Repeat until number of 
nucleotides equals desired 
length of sequence

We can use this HMM to generate a sequence and
state labeling

IntergenicIntergenic

ExonExon

Donor GDonor G Acceptor GAcceptor G

IntronIntron

q0
q0

Start
Codon A

Start
Codon A

Start
Codon T

Start
Codon T

Start
Codon G

Start
Codon G

Stop
Codon A

Stop
Codon A

Stop
Codon T

Stop
Codon T

Stop
Codon G

Stop
Codon G

Donor TDonor T Acceptor AAcceptor A



But We Usually Have the Sequence

AGCTAGCAGTATGTCATGGCATGTTCGGAGGTAGTACGTAGAGGTAGCTAGTATAGGTCGATAGTACGCGA

the Markov the Markov 
model:model:

the input sequence:the input sequence:

IntergenicIntergenic

ExonExon

Donor GDonor G Acceptor GAcceptor G

IntronIntron

q0
q0

Start
Codon A

Start
Codon A

Start
Codon T

Start
Codon T

Start
Codon G

Start
Codon G

Stop
Codon A

Stop
Codon A

Stop
Codon T

Stop
Codon T

Stop
Codon G

Stop
Codon G

Donor TDonor T Acceptor AAcceptor A

http://geneprediction.org/book/classroom.htmlCourtesy of William Majoros. Used with permission.

What is the best state labeling?



Finding The Most Likely Path
• A sensible choice is to choose π that maximizes P[π|x]

• This is equivalent to finding path π* that maximizes total 
joint probability P[ x, π ]:

P(x,π) = a0π1
* Πi eπi

(xi) × aπiπi+1

start emission transition

How do we select π∗ efficiently?



A (Very) Simple HMM

exon 1exon 1 exon 2exon 2 exon 3exon 3

AGCTAGCAGTATGTCATGGCATGTTCGGAGGTAGTACGTAGAGGTAGCTAGTATAGGTCGATAGTACGCGA

the Markov the Markov 
model:model:

the gene prediction:the gene prediction:

the input sequence:the input sequence:
the most probable path:the most probable path:

IntergenicIntergenic

ExonExon

Donor GDonor G Acceptor GAcceptor G

IntronIntron

q0
q0

Start
Codon A

Start
Codon A

Start
Codon T

Start
Codon T

Start
Codon G

Start
Codon G

Stop
Codon A

Stop
Codon A

Stop
Codon T

Stop
Codon T

Stop
Codon G

Stop
Codon G

Donor TDonor T Acceptor AAcceptor A

http://geneprediction.org/book/classroom.htmlCourtesy of William Majoros. Used with permission.



A Real HMM Gene Predictor

Title page of journal article removed due to copyright restrictions.  
The article is the following:

Krogh, Anders, I. Saira Mian, and David Haussler. "A Hidden 
Markov Model That Finds Genes in E.coli DNA." Nucleic Acids 
Research 22, no. 22 (1994): 4768-4778.



HMM Limitations

The HMM framework 
imposes constraints 

on state paths…

IntergenicIntergenic

ExonExon

Donor GDonor G Acceptor GAcceptor G

IntronIntron

q0
q0

Start
Codon A

Start
Codon A

Start
Codon T

Start
Codon T

Start
Codon G

Start
Codon G

Stop
Codon A

Stop
Codon A

Stop
Codon T

Stop
Codon T

Stop
Codon G

Stop
Codon G

Donor TDonor T Acceptor AAcceptor A



Human Exon Lengths

Burge, MIT PhD Thesis
Courtesy of Christopher Burge. Used with permission.



Fungal Intron Lengths

Kupfer et al., (2004) Eukaryotic Cell

Figure by MIT OpenCourseWare.
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HMM Emissions

Intergenic

Exon

Donor G Acceptor G

Intron

q0

Donor T Acceptor A

HMMs typically emit a single 
nucleotide per state

P(T)=1
P(A),P(G),P(C)=0



Generalized HMMs (GHMMs)

• GHMMs emit more than one 
symbol per state

• Emissions probabilities 
modeled by any arbitrary 
probabilistic model

• Feature lengths are explicitly 
modeled

W.H. Majaros (http://geneprediction.org/book/classroom.html)

Burge, Karlin (1997)

Human Introns

Courtesy of Elsevier, Inc.
http://www.sciencedirect.com. Used with permission.

Courtesy of William Majoros. Used with permission.

http://www.sciencedirect.com/


GHMM Elements

• States
• Observations
• Initial state probabilities
• Transition Probabilities

• Duration Probabilities

• Emission Probabilities

Q
V
πi = P(q0=i)
ajk= P(qi=k|qi-1=j)

fk(d)=P(state k of length d)

ek(Xα,α+d)=Pk(Xα…Xα+d| qk,d)

Like
HMMs

Now emit a subsequence



Model Abstraction in GHMMs

W.H. Majaros (http://geneprediction.org/book/classroom.html)

Models must return the probability of a 
subsequence given a state and duration

Courtesy of William Majoros. Used with permission.



GHMM Submodel Examples

  
Pi (xi)

i=0

L−1

∏

  
P(xi | x0...xi−1) P(xi | xi−n...xi−1)

i=n

L−1

∏
i=0

n−1

∏

  
P( f + i)(mod 3) (xi)

i=0

L−1

∏

    
P(xα+3ixα+3i+1xα+3i+2 )

i=0

n−1

∏

  

Pe
IMM (s | g0...gk −1) =

        λk
GPe (s | g0...gk−1)+ (1− λk

G )Pe
IMM (s | g1...gk −1)  if k > 0

Pe (s)  if k = 0
⎧ 
⎨ 
⎩ 

Ref: Burge C (1997) Identification of complete gene 
structures in human genomic DNA. PhD thesis. Stanford 
University.

Ref: Salzberg SL, Delcher AL, Kasif S, White O (1998) 
Microbial gene identification using interpolated Markov 
models. Nucleic Acids Research 26:544-548.

1. WMM (Weight Matrix)

2. Nth-order Markov Chain (MC)

3. Three-Periodic Markov Chain (3PMC)

5. Codon Bias

6. MDD                      

7. Interpolated Markov Model

1. WMM (Weight Matrix)

2. Nth-order Markov Chain (MC)

3. Three-Periodic Markov Chain (3PMC)

5. Codon Bias

6. MDD                      

7. Interpolated Markov Model

http://geneprediction.org/book/classroom.html
Courtesy of William Majoros. Used with permission.



GHMMs as Generative Models
Like HMM, we can use a GHMM to generate a 

sequence and state labeling
• Choose initial state, q1, from πi

• Choose a duration d1, from length distribution fq1(d)

• Generate a subsequence from state model eq1(X1,d)

• Choose a subsequent state, q2, conditioned on the current 
state, according to ajk=P(qk|qj)

• Repeat until number of nucleotides equals desired length of 
sequence
Given a sequence, how do we pick a state labeling 

(segmentation)?



The Viterbi Algorithm - HMMs

x1 x2 x3 ………………………………………..xN

Input: x = x1……xN

Initialization:
V0(0)=1, Vk(0) = 0, for all k > 0

Iteration:
Vk(i) = eK(xi) × maxj ajk Vj(i-1)

Termination:
P(x, π*) = maxk Vk(N)

Traceback:
Follow max pointers back

In practice:
Use log scores for computation

Running time and space: 
Time:    O(K2N)
Space:  O(KN)

State 1
2

K

Vk(i)



this emission Transition
from state j

max ending
in state j at step i-1

current max

• Assume we know Vj for the previous time step (i-1)

• Calculate Vk(i) =     ek(xi)   *   maxj (   Vj(i-1)   × ajk )

HMM Viterbi Recursion

xi

ek

k
j

ajk…
…

xi-1

…
Vj(i-1)

Vk(i)hidden
states

observations

all possible previous states j



GHMM Recursion

xi

ek

k
j

ajk…
…

xi-1

…
Vj(i-1)

Vk(i)hidden
states

observations

We could have come from state j at 
the last position…



GHMM Recursion

But we could also have come from state j
4 positions ago…

(State k could have duration 4 so far)



GHMM Recursion

In general, we could have come from state j
d positions ago

(State k could have duration d so far)



GHMM Recursion

This leads to the following recursion equation:

( ) ( ) ( ) ( )max max |k i i d j jkj d
V i P x x k V i d P d k a−⎡ ⎤= ⋅ − ⋅ ⋅⎣ ⎦…

Max ending in 
state j at step i-d

Prob that state
k has duration

d

Transition
from j->k

Prob of 
subsequence
given state k

Max over all prev
states and state

durations



this emission Transition
from state j

max ending
in state j at step i-1

current max

all possible previous states j

Comparing GHMMs and HMMs

( ) ( ) ( ) ( )max max |k i i d j jkj d
V i P x x k V i d P d k a−⎡ ⎤= ⋅ − ⋅ ⋅⎣ ⎦…

Max ending in 
state j at step i-d

HMM – O(K2L)

Vk(i) =     ek(xi)   *   maxj (   Vj(i-1)   × ajk )

GHMM – O(K2L3)

Prob that state
k has duration

d

Transition
from j->k

Prob of 
subsequence
given state k

Max over all prev
states and state

durations

Similar modifications needed for forward and 
backward algorithms



Courtesy of Elsevier, Inc. http://www.sciencedirect.com. Used with permission.

http://www.sciencedirect.com/


Genscan - Burge and Karlin, (1997)

• Explicit State Duration GHMM

• 5th order markov models for 
coding and non-coding 
sequences

• Each CDS frame has own model

• WAM models for start/stop 
codons and acceptor sites

• MDD model for donor sites

• Separate parameters for regions 
of different GC content 

• Model +/- strand concurrently

Courtesy of Elsevier, Inc. http://www.sciencedirect.com. Used with permission.

http://www.sciencedirect.com/


Types of Exons
Three types of exons are defined, for convenience: 

• initial exons extend from a start codon to the first donor site; 
• internal exons extend from one acceptor site to the next donor 
site; 
• final exons extend from the last acceptor site to the stop 
codon; 
• single exons (which occur only in intronless genes) extend 
from the start codon to the stop codon:

http://geneprediction.org/book/classroom.htmlCourtesy of William Majoros. Used with permission.



Intron and Exon Phase

3 1 2 3 1 2 3 1
Exon ExonIntron

Phase 0 Intron Phase 0 Exon

2 3 1 2 3 1 2 3
Exon ExonIntron

Phase 1 Intron Phase 1 Exon

1 2 3 1 2 3 1 2
Exon ExonIntron

Phase 2 Intron Phase 2 Exon

Codon



Two State Types in Genscan

• D-type represented 
by diamonds

• C-type represented 
by circles

D states are always 
followed by C and 

vice versa

C states always 
preceded by same D-

state
Courtesy of Elsevier, Inc. http://www.sciencedirect.com. Used with permission.

http://www.sciencedirect.com/


Two State Types in Genscan
• D-Type – geometric length distribution

– Intergenic regions
– UTRs
– Introns

( )
k

, ( , ) ( 1, )
( ) (state duration d|state k)=p ( 1)

k k k

k k

P Xa c P Xa b P Xb c
f d P f d

= +

= −

Sequence models are “factorable”:

Increasing duration by one changes 
probability by constant factor



Two State Types in Genscan
• C-Type – general length distributions 

and sequence generating modes
– Exons (initial, internal, terminal)
– Promotors
– Poly-A Signals



Genscan Inference

• Genscan uses same basic forward, 
backward, and viterbi algorithms as 
generic GHMMs

• But assumptions about C, and D states 
reduce algorithmic complexity



Genscan Inference – C-state List

x1 x2 x3 ………………………………………..xN

State 1
2

K
C2

C1

Vk(i)

D states

C states

Lk(i)
C1, duration 2, previous D-state=1
C2, duration 3, previous D-state=2



Genscan Viterbi Induction

( ) ( )

( )
c

1

c y i-d i 1c  c-type states

1 max [ ( ),

max  { 1 P(y |c)(1-p )  P(d|c)P(X ..X |c)  P(k|c) ( )}]
c

k k k k i

y k k i

V i V i p e X

V i d p e X

+

+∈

+ = ⋅ ⋅

− − ⋅ • • ⋅ ⋅

Was in state 
K in previous 

step

Just 
transitioned 
from c-type 
state c  of 
duration d 

which 
previously 

transitioned 
from D-type 

state yc

Max from 
previous step 
in this state

Extend D-type 
state by one 

step 
(factorable 

state)

Probability of emiting
one more nucleotide 

from state k

Probability that 
C state was 
duration d

Probability of 
subsequence 

of length d 
from state c

Probability of 
transition from 

c to k

Probability of 
nucleotide 

from state k

Max probability 
of ending D type 

state yc at 
position i-d-1

Probability of 
transition from 

yc to c

Terminate D-
type state 

length



During training of a gene finder, only a subset K of an organism’s 
gene set will be available for training:

The gene finder will later be deployed for use in predicting the 
rest of the organism’s genes. The way in which the model 
parameters are inferred during training can significantly affect 
the accuracy of the deployed program.

http://geneprediction.org/book/classroom.htmlCourtesy of William Majoros. Used with permission.

Training A Gene Predictor



Training A Gene Predictor

http://geneprediction.org/book/classroom.html
Courtesy of William Majoros. Used with permission.



Gene Prediction Accuracy
Gene predictions can be evaluated in terms of true positives (predicted 
features that are real), true negatives (non-predicted features that are not 
real), false positives (predicted features that are not real), and false 
negatives (real features that were not predicted:

These definitions can be applied at the whole-gene, whole-exon, or 
individual nucleotide level to arrive at three sets of statistics.

http://geneprediction.org/book/classroom.html
Courtesy of William Majoros. Used with permission.



Accuracy Metrics

  
F =

2× Sn × Sp
Sn + Sp  

Sn =
TP

TP + FN  
Sp =

TP
TP + FP

  
SMC =

TP +TN
TP +TN + FP + FN

    
CC =

(TP ×TN )− (FN × FP)
(TP + FN )× (TN + FP)× (TP + FP)× (TN + FN )

.

    
ACP =

1
n

TP
TP + FN

+
TP

TP + FP
+

TN
TN + FP

+
TN

TN + FN

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,

    AC = 2(ACP − 0.5).
http://geneprediction.org/book/classroom.htmlCourtesy of William Majoros. Used with permission.



More Information

• http://genes.mit.edu/burgelab/links.html

• http://www.geneprediction.org/book/clas
sroom.html
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