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6.047/6.878 Computational Biology September 29, 2008 

Lecture 8: Computational Gene Prediction and GHMMs 
Lecturer: James E. Galagan 

Overview of gene prediction 

One of the fundamental problems in computational biology identification of genes in very long 
genome sequences. As we know DNA is a sequence of nucleotide molecules, or bases, which 
encode instructions for generation of proteins. However, not all of these bases correspond 
directly to amino acids. Even within a gene, a relatively small percentage of the nucleotides 
might actually be translated into an amino acid chain. 

For example, Eukaryotic genomes contain introns, or long segments of non-coding nu­
cleotides within a gene; the introns are discarded during processing into mature RNA leaving 
only the exons linked together to contribute to protein manufacturing. Also, both Prokaryotic 
and Eukaryotic genomes contain substantial intergenic regions, and there are many other types 
of segments such as introns, start and stop codons, etc. which do not code for proteins directly, 
but are crucial to the protein synthesis in other ways. The contiguous subsequence of bases 
that is finally parsed out of DNA during processing into RNA is called the coding sequence, 
and is comprised of the exons with all introns removed. This sequence is then deterministically 
translated into amino acids. Our task in gene prediction (or genome annotation) is: 

Given a DNA sequence (X) with zero or more genes and some “evidence” associated with 
the given DNA sequence, determine a labeling (Y ) that assigns to each base a label according 
to the functionality of that part of the gene. Some of the most basic labels are: 

Intron Non-coding regions within a gene; removed during processing into mature RNA. 

Exon Coding regions. 3-letter words, or codons, correspond directly to amino acids. 

Intergenic Region Non-coding region located between two genes. 

Start/Stop Codons Specific sequences appearing at the beginning and end of all genes. 

Acceptor Site Specific sequence appearing at the end of an intron / the beginning of an exon. 

Donor Site Specific sequence appearing at the beginning of an intron / the end of an exon. 

With these labels, we can think of gene prediction as parsing a sequence of letters into 
words. In this analogy, the different regions of a DNA sequence are similar to different types 
of words (nouns, verbs, etc.), and just as we must follow grammatical rules when constructing 
sentences, there are syntactical rules for parsing DNA as well. For example, we only allow 
introns to occur within genes, and we expect to find start and stop codons before and after 
genes occur. There are likely to be many “valid” parses, and in general we are searching for 
the most probable legal parse of the sequence. 

1




2 Gene prediction methods 

How do we annotate genes? We would like to consider all evidence available to make the most 
accurate annotation possible. We can classify our evidence into two main categories: intrinsic 
and extrinsic. Intrinsic evidence is information gathered directly from the nucleotide sequence, 
or features of the sequence. This includes short significant subsequences like start codons, stop 
codons, a TATA box, etc. called signals, along with content regions, such as general statistics 
about the relative levels of the four nucleotide bases in a region. For example, in exon regions, 
all codons are not used equally, and we can translate codon frequency statistics into nucleotide 
frequency information. In intergenic regions or introns, there is a fundamental difference in 
nucleotide frequencies compared to exons resulting from the difference in evolutionary pressure 
between the two regions. All of this evidence must be taken in context statistically; for exam­
ple, features are short sequences which will appear randomly throughout DNA sequences, so 
the presence of a start codon by itself isn’t strong evidence. However, finding combinations of 
signals such as: 

Start Codon Acceptor Site Donor Site Stop Codon → → → 

constitues stronger evidence because it makes sense syntactically, whereas 

Acceptor Site Stop Codon Start Codon Donor Site → → → 

does not, as it isn’t a valid parse. Other examples of measures we can incorporate are the 
lack of stop codons in the middle of exons, and the length of the regions (exons tend to be 
smaller, around 200 bases, introns can be serveral kbps in length). Apart from the evidence 
intrinsic to the DNA sequence, we can also incorporate some extrinsic evidence, like direct 
experimental evidence, BLAST hits, and the significance of each BLAST hit, HMMer hits, 
alignments from sequences of actual RNA to determine exons vs. introns, etc. The main 
question of gene prediction algorithms is how to combine all of this evidence together. 

3 HMMs in Gene Prediction 

The most popular method so far of combining evidence is the HMM (Hidden Markov Models). 
In this probabilistic model, we represent the labels as hidden states which constitute a Markov 
chain. For each pair of base xi and label yj , we also assign an emission probability to model 
the probability of observing base xi when the hidden state is yj . We denote this as eyj (xi). 
An important feature here is that we can ensure that the model produces only legal parses of 
a genome by assigng transition probabilities between states ajk, representing the probability of 
transitioning into state k from state j. If k = intron and j = intergenic, then it is clear that 
ajk = 0, as we cannot move from an intron region into an intergenic regions. 

This model is also called a generative model, since a convenient way to think of the HMM 
is to imagine that there is a machine with a button. And by pushing the button, one can 
generate a genome sequence according to some probability distribution. In gene prediction, 
we use maximum-likelihood training to compute state transition probabilities and emission 
probabilities, and then find the most likely hidden state sequence Y = y1 . . . yn. Note that 

2 



4 

HMM in fact models a joint distribution over bases and hidden states, namely P (X, Y ) = 
P (Labels, Sequence). 

However, in gene prediction problems, we are given X and need to predict Y . This process 
clearly calls for a Dynamic Programming solution, namely the Viterbi algorithm. While HMMs 
have been applied to the gene prediction problem, there are some assumptions implicit to 
the model which are difficult to reconcile with real data. The most troubling problem is the 
distribution of state durations. For any state yj of a HMM, we have a probability p of staying 
in state yj , and probability (1 − p) of transitioning to another state. This gives us a geometric 
distribution for the state duration of yj , described by the discrete distribution P (D = d) = 
pd (1 − p). The problem arises from the fact that region lengths in DNA often do not resemble · 
the geometric distribution. Another limitation of the HMM model is that we think of each 
state emitting a single nucleotide. 

Introduction of Generalized Hidden Markov Models 

To address these issues, we find it desirable to think of a Generalized Hidden Markov Model 
(GHMM) which allows us to explicitly specify several important aspects which were implicit in 
HMMs. We will allows states in the GHMM to emit arbitrary length sequences, and we will 
allow the emission probabilities to be an arbitrary function as well. Finally, we will specify 
transition probabilities explicitly so that they may be, for example, a function of the current 
length of the sequence. This allows us to model state durations according to experimental 
observations more realistically, resulting in higher accuracy parses. A GHMM consists of the 
following components which are similar to HMMs: 

- States Q 

- Observations V 

- Initial State Probabilities πi = P (a0 = i) 

and with the following differences: 

- Duration Probabilities fk(d) = P (state k of length D) 

- Emission Probabilities ek(Xa,a+d) = Pk(Xa . . . Xa+d|qk, d) 

We wish to apply GHMMs again to the problem of gene annotation. Therefore, GHMMs 
must return the probability of a subsequence given a state and duration. Thinking about 
GHMMs in this way allows us to consider the set of states more abstractly without worrying 
about how the arbitrary functions are implemented. They could consist of anything capable of 
returning a probability distribution, i.e. a function, a properly set up neural network, etc. 

Generalizing HMMs into this framework, however, increases the complexity of the problem 
of computing optimal paths such that it isn’t feasible to run a Viterbi algorithm in the most 
general sense. The cause for the increase in the complexity of the problem arises from computing 
the optimal value for step i. We now must consider not only the optimal state computed for 
i − 1, but also further back, as the optimization algorithm must now consider that we could 
have changed states just now... or we may just now realize that we changed states 4 positions 
ago. 
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This leads to a more complex recursion algorithm for the Viterbi algoritm on GHMMs. The 
recursion for a standard HMM and for a GHMM are both presented below for comparison: 

HMM: Vk(i) = ek(xi) max[Vj (i − 1) ajk]· 
j 

· 

GHMM: Vk(i) = max max[P (xi . . . xi−d|k) Vj (i − d) P (d k) ajk]
j d 

· · | · 

The GHMM recursion is more complex because we must take the maximum of both all 
previous states j, and all previous durations d. Inside the recursion the GHMM formula is 
straightforward: 

- P (xi . . . xi−d|k) : Probability of seeing the sequence (xi . . . xi−d) of length d in state k. 

- Vj (i − d) : Maximum probabilitiy of ending in state j at step i − d 

- P (d|k) : Probability that state k has duration d. 

- ajk : Probability of a transition from state j to k. 

Whereas the running time of the Viterbi algorithm on HMMs is O(K2L), the running 
time on GHMMs is much worse, O(K2L3). The dependence on length turns out to make this 
algorithm unfeasible on gene sequences on the scale of the human genome. 

GENSCAN 

To address this concern and to make GHMMs useful, many implementations have been cre­
ated that realize algorithmic speed-ups by selecting clever implementations of the arbitrary 
functions, or by making some other assumptions that help to limit the size of the expanded 
search space. The lecture focused on work by Chris Burge in his PhD thesis [2] on a particular 
implementation, called GENSCAN. This algorithm provided a good balance between capturing 
the complexity of the model, yet made a few key assumptions to reduce the algorithmic run 
time. 

Some key features of GENSCAN include: 

- Explicitly defined state duration probabilities 

- Use a 5th order markov model to predict coding and non-coding sequences. (Look at the 
previous 5 nucleotides when predicting the next one.) 

- Keep track of the frame of the coding sequence. When an intron interrupts a sequence, 
the model keeps track of the phase. 

- Search both the 5’ 3’ and 3’ 5’ strand at the same time. → → 

- Considers different types of exons, i.e. initial exons which follow the start codon, internal 
exons located between an acceptor site and a donor site, final exons preceeding the stop 
codon, or single exons which aren’t interrupted by any introns. 
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- Create two main state types, C states and D states. The model is constructed so that 
we alternate between C and D states with each transition. 

The most important aspect of GENSCAN, which provides algorithmic simplification we 
require to acheive acceptable running times is the concept of C and D states. This has two 
effects. First it reduces how far into the past we need to look. It also specifies that D states 
must have a length distribution with properties similar to the length distributions given by a 
HMM. Specifically, the difference between the probability of a D state having duration d vs. 
d − 1 is given by a constant factor pk. Therefore: 

P (Length= d|D state) = P (Length= d − 1|D state) · pk. 

fk(d) = P (state duration d — state k) = pk · fk(d − 1) 

This forces us to use geometric-like distributions, which we can get away with for intergenic 
regions, introns, UTRs, etc. However, for regions with state duration distributions radically 
different from the geometric distribution, or C states, GENSCAN specifies explicit formulas 
that capture these semantics. 

Note: This is the draft of the notes for this lecture. The final version will include a more 
thorough consideration of the algorithmic details of GENSCAN. 

References 

[1] James Galagan. Conditional Random Fields for Computational Gene Prediction.	 Lecture 
note 6 of MIT 6.047/6.878 Computational Biology, Sept. 2007. 

[2] Burge, C., Karlin, S.	 Prediction of complete gene structures in human genomic DNA. 

5


http://ai.stanford.edu/~serafim/cs262/Papers/GENSCAN.pdf


