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Modeling biological sequences

• Ability to generate DNA sequences of a certain type
– Not exact alignment to previously known gene
– Preserving ‘properties’ of type, not identical sequence

• Ability to recognize DNA sequences of a certain type
– What (hidden) state is most likely to have generated observations
– Find set of states and transitions that generated a long sequence

• Ability to learn distinguishing characteristics of each type
– Training our generative models on large datasets
– Learn to classify unlabelled data

Intergenic CpG
island

Promoter First
exon

Intron Other
exon

Intron

TTACAGGATTATGGGTTACAGGTAACCGTTGTACTCACCGGGTTACAGGATTATGGGTTACAGGTAACCGGTACTCACCGGGTTACAGGATTATGGTAACGGTACTCACCGGGTTACAGGATTGTTACAG
G



Markov Chains & Hidden Markov Models

• Markov Chain
– Q: states
– p: initial state probabilities
– A: transition probabilities

• HMM
– Q: states
– V: observations
– p: initial state probabilities
– A: transition probabilities
– E: emission probabilities

A+ T+

G+C+

aGTaAC

aGC

aAT
A+ T+G+C+

A: 0 
C: 0 
G: 1 
T: 0

A: 1 
C: 0 
G: 0 
T: 0

A: 0 
C: 1 
G: 0 
T: 0

A: 0 
C: 0 
G: 0 
T: 1



HMM nomenclature
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• Find path π* that maximizes total joint probability P[ x, π ]

• P(x,π) = a0π1
* Πi eπi

(xi) × aπiπi+1

start emission transition

x is the 
(observed)
sequence

π is the 
(hidden) path

es(xi)

ast



HMM for the dishonest casino model

FAIR LOADED

0.05

0.05

0.95

eF(2) = 1/6
eF(3) = 1/6
eF(4) = 1/6
eF(5) = 1/6
eF(6) = 1/6

emissions

0.95

transitions P(πi=L|πi-1=F)
aFL

aLF

aFF

eF(1) = P(xi=1|πi=F)=1/6

aLL

eL(1) = P(xi=1|πi=L) = 1/10
eL(2) = 1/10
eL(3) = 1/10
eL(4) = 1/10
eL(5) = 1/10
eL(6) = 1/2



HMM for CpG islands

• Build a single model that combines both 
Markov chains:
– ‘+’ states: A+, C+, G+, T+

• Emit symbols: A, C, G, T in CpG islands
– ‘-’ states: A-, C-, G-, T-

• Emit symbols: A, C, G, T in non-islands

• Emission probabilities distinct for the ‘+’
and the ‘-’ states
– Infer most likely set of states, giving rise 

to observed emissions
‘Paint’ the sequence with + and - states

A+ T+G+C+

A- T-G-C-

A: 0 
C: 0 
G: 1 
T: 0

A: 1 
C: 0 
G: 0 
T: 0

A: 0 
C: 1 
G: 0 
T: 0

A: 0 
C: 0 
G: 0 
T: 1

A: 0 
C: 0 
G: 1 
T: 0

A: 1 
C: 0 
G: 0 
T: 0

A: 0 
C: 1 
G: 0 
T: 0

A: 0 
C: 0 
G: 0 
T: 1

Question:  Why do we need so many states? 
In the Dishonest Casino we only had 2 states:  Fair / Loaded
Why do we need 8 states here:  4 CpG+ / 4 CpG- ?

Encode ‘memory’ of previous state:  count nucleotide transitions!
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1. Scoring = Joint probability of a sequence and a path, given the model
– GIVEN a HMM M, a path π, and a sequence x,
– FIND Prob[ x, π | M ]

“Running the model”, simply multiply emission and transition probabilities
Application:  “all fair” vs. “all loaded” comparisons

2. Decoding = parsing a sequence into the optimal series of hidden states
– GIVEN a HMM M, and a sequence x,
– FIND the sequence π* of states that maximizes P[ x, π | M ]

Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path
3. Model evaluation = total probability of a sequence, summed across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[x | M] summed across all paths

Forward algorithm, sum score over all paths (same result as backward)
4. State likelihood = total prob that emission xi came from state k, across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[πi = k | x, M)

Posterior decoding: run forward & backward algorithms to & from state πI =k
5. Supervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x,
– FIND parameters θ = (ei, aij) that maximize P[ x | θ ]

Simply count frequency of each emission and transition observed in the training data
6. Unsupervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x,
– FIND parameters θ = (ei, aij) that maximize P[ x | θ ]

Viterbi training:  guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate
Baum-Welch training:  guess, sum over all emissions/transitions (#4), update (#5), iterate

The main questions on HMMs



1. Scoring

Multiply emissions, transitions



1. Scoring

• P(p,x) = (a0,C+* 1) * (aC+,G-* 1) * (aG-,C-* 1) * (aC-,G+* 1) * (aG+,0)

C-

C+

G-

C-

G+

C+

G+

C G C G

start end
a0,C+

aC+,G-

aG-,C-

aC-,G+

aG+,0

eG-(G)eC+(C) eC-(C) eG+(G)

Probability of given path p & observations x



The main questions on HMMs
1. Scoring = Joint probability of a sequence and a path, given the model

– GIVEN a HMM M, a path π, and a sequence x,
– FIND Prob[ x, π | M ]

“Running the model”, simply multiply emission and transition probabilities
Application:  “all fair” vs. “all loaded” comparisons

2. Decoding = parsing a sequence into the optimal series of hidden states
– GIVEN a HMM M, and a sequence x,
– FIND the sequence π* of states that maximizes P[ x, π | M ]

Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path
3. Model evaluation = total probability of a sequence, summed across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[x | M] summed across all paths

Forward algorithm, sum score over all paths (same result as backward)
4. State likelihood = total probability that emission xi came from state k, across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[πi = k | x, M)

Posterior decoding: run forward & backward algorithms to & from state πI =k
5. Supervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x,
– FIND parameters θ = (Ei, Aij) that maximize P[ x | θ ]

Simply count frequency of each emission and transition observed in the training data
6. Unsupervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x,
– FIND parameters θ = (Ei, Aij) that maximize P[ x | θ ]

Viterbi training:  guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate
Baum-Welch training:  guess, sum over all emissions/transitions (#4), update (#5), iterate



2. Decoding: 
How can we find the most likely path?

Viterbi algorithm



Finding most likely state path

• Given the observed emissions, what was the path?
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Finding the most likely path
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• Find path π* that maximizes total joint probability P[ x, π ]

• P(x,π) = a0π1
* Πi eπi

(xi) × aπiπi+1

start emission transition



Calculate maximum P(x,π) recursively

• Assume we know Vj for the previous time step (i-1)

• Calculate Vk(i) =     ek(xi)   *   maxj (   Vj(i-1)   × ajk )

xi

ek

k
j

ajk…
…

xi-1

…
Vj(i-1)

Vk(i)hidden
states

observations

this emission Transition
from state j

max ending
in state j at step i

all possible previous states j

current max



The Viterbi Algorithm

x1 x2 x3 ………………………………………..xN

Input: x = x1……xN

Initialization:
V0(0)=1, Vk(0) = 0, for all k > 0

Iteration:
Vk(i) = eK(xi) × maxj ajk Vj(i-1)

Termination:
P(x, π*) = maxk Vk(N)

Traceback:
Follow max pointers back

In practice:
Use log scores for computation

Running time and space: 
Time:    O(K2N)
Space:  O(KN)

State 1
2

K

Vk(i)
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1. Scoring = Joint probability of a sequence and a path, given the model
– GIVEN a HMM M, a path π, and a sequence x,
– FIND Prob[ x, π | M ]

“Running the model”, simply multiply emission and transition probabilities
Application:  “all fair” vs. “all loaded” comparisons

2. Decoding = parsing a sequence into the optimal series of hidden states
– GIVEN a HMM M, and a sequence x,
– FIND the sequence π* of states that maximizes P[ x, π | M ]

Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path
3. Model evaluation = total probability of a sequence, summed across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[x | M] summed across all paths

Forward algorithm, sum score over all paths (same result as backward)
4. State likelihood = total probability that emission xi came from state k, across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[πi = k | x, M)

Posterior decoding: run forward & backward algorithms to & from state πI =k
5. Supervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x,
– FIND parameters θ = (Ei, Aij) that maximize P[ x | θ ]

Simply count frequency of each emission and transition observed in the training data
6. Unsupervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x,
– FIND parameters θ = (Ei, Aij) that maximize P[ x | θ ]

Viterbi training:  guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate
Baum-Welch training:  guess, sum over all emissions/transitions (#4), update (#5), iterate

The main questions on HMMs



3. Model evaluation: 
Total P(x|M), summed over all paths

Forward algorithm



Simple: Given the model, generate some sequence x

Given a HMM, we can generate a sequence of length n as follows:
1. Start at state π1 according to prob a0π1

2. Emit letter x1 according to prob eπ1(x1)
3. Go to state π2 according to prob aπ1π2

4. … until emitting xn
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Complex: Given x, was it generated by the model?

Given a sequence x,
What is the probability that x was generated by the model (using any path)?

– P(x) = Σπ P(x,π)

• Challenge: exponential number of paths

• (cheap) alternative:  
– Calculate probability over maximum (Viterbi) path π*

• (real) solution
– Calculate sum iteratively using dynamic programming
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The Forward Algorithm – derivation
Define the forward probability:

fl(i) = P(x1…xi, πi = l) 

=     Σπ1…πi-1 P(x1…xi-1, π1,…,  πi-2, πi-1,   πi = l) el(xi)

= Σk Σπ1…πi-2 P(x1…xi-1, π1,…, πi-2, πi-1=k)    akl el(xi)

= Σk fk(i-1) akl el(xi) 

= el(xi) Σk fk(i-1) akl



Calculate total probability Σπ P(x,π) recursively

• Assume we know fj for the previous time step (i-1)

• Calculate  fk(i) =     ek(xi)   *   sumj (   fj(i-1)    × ajk )

xi

ek

k
j

ajk…
…

xi-1

…
fj(i-1)

fk(i)hidden
states

observations

this emission transition
from state j

sum ending
in state j at step i

every possible previous state j

current max



The Forward Algorithm

x1 x2 x3 ………………………………………..xN

Input: x = x1……xN

Initialization:
f0(0)=1, fk(0) = 0, for all k > 0

Iteration:
fk(i) = eK(xi) × sumj ajk fj(i-1)

Termination:
P(x, π*) = sumk fk(N)

In practice:
Sum of log scores is difficult

approximate exp(1+p+q)
scaling of probabilities

Running time and space: 
Time:    O(K2N)
Space:  O(KN)

State 1
2

K

fk(i)



Summary
• Generative model

– Hidden states
– Observed sequence

• ‘Running’ the model
– Generate a random sequence

• Observing a sequence
– What is the most likely path generating it?

• Viterbi algorithm
– What is the total probability generating it?

• Sum probabilities over all paths
• Forward algorithm

• Next:  Classification
– What is the probability that “CGGTACG” came from CpG+ ?



The main questions on HMMs
1. Scoring = Joint probability of a sequence and a path, given the model

– GIVEN a HMM M, a path π, and a sequence x,
– FIND Prob[ x, π | M ]

“Running the model”, simply multiply emission and transition probabilities
Application:  “all fair” vs. “all loaded” comparisons

2. Decoding = parsing a sequence into the optimal series of hidden states
– GIVEN a HMM M, and a sequence x,
– FIND the sequence π* of states that maximizes P[ x, π | M ]

Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path
3. Model evaluation = total probability of a sequence, summed across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[x | M] summed across all paths

Forward algorithm, sum score over all paths (same result as backward)
4. State likelihood = total probability that emission xi came from state k, across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[πi = k | x, M)

Posterior decoding: run forward & backward algorithms to & from state πI =k
5. Supervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x,
– FIND parameters θ = (Ei, Aij) that maximize P[ x | θ ]

Simply count frequency of each emission and transition observed in the training data
6. Unsupervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x,
– FIND parameters θ = (Ei, Aij) that maximize P[ x | θ ]

Viterbi training:  guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate
Baum-Welch training:  guess, sum over all emissions/transitions (#4), update (#5), iterate



4. State likelihood

Find the likelihood an emission xi is 
generated by a state



Calculate P(π7= CpG+ | x7=G)

• With no knowledge (no characters)
– P( πi=k ) =  most likely state (prior)
– Time spent in markov chain states

• With very little knowledge (just that character)
– P( πi=k | xi=G ) = (prior) * (most likely emission)
– Emission probabilities adjusted for time spent

• With knowledge of entire sequence (all characters)
– P( πi=k | x=AGCGCG…GATTATCGTCGTA)
– Sum over all paths that emit ‘G’ at position 7

Posterior decoding



Motivation for the Backward Algorithm

We want to compute

P(πi = k | x), the probability distribution on the ith position, given x

We start by computing

P(πi = k, x) = P(x1…xi, πi = k, xi+1…xN)
= P(x1…xi, πi = k) P(xi+1…xN | x1…xi, πi = k) 
= P(x1…xi, πi = k) P(xi+1…xN | πi = k) 

Forward, fk(i) Backward, bk(i)



The Backward Algorithm – derivation
Define the backward probability:

bk(i) = P(xi+1…xN | πi = k) 
= Σπi+1…πN P(xi+1,xi+2, …, xN, πi+1, …, πN | πi = k)
= Σl Σπi+1…πN P(xi+1,xi+2, …, xN, πi+1 = l, πi+2, …, πN | πi = k)
= Σl el(xi+1) akl Σπi+1…πN P(xi+2, …, xN, πi+2, …, πN | πi+1 = l)
= Σl el(xi+1) akl bl(i+1)



Calculate total end probability recursively

• Assume we know bl for the next time step (i+1)

• Calculate  bk(i)  =    suml (   el(xi+1)   × akl × bl(i+1)  )

xi+1

el

l
k

akl

…

…

xi

…bk(i)
bl(i+1)

hidden
states

observations

next
emission

transition
to next state

prob sum from
state l to end

sum over all possible next states

current max



The Backward Algorithm

x1 x2 x3 ………………………………………..xN

Input: x = x1……xN

Initialization:
bk(N) = ak0, for all k

Iteration:
bk(i) = Σl el(xi+1) akl bl(i+1)

Termination:
P(x) = Σl a0l el(x1) bl(1)

In practice:
Sum of log scores is difficult

approximate exp(1+p+q)
scaling of probabilities

Running time and space: 
Time:    O(K2N)
Space:  O(KN)

State 1
2

K

bk(i)



Putting it all together:  Posterior decoding

• P(k) = P( πi=k | x ) = fk(i)*bk(i) / P(x)
– Probability that ith state is k, given all emissions x

• Posterior decoding
– Define most likely state for every of sequence x
– π^

i = argmaxk P(πi = k | x)
• Posterior decoding ‘path’ π^

i
– For classification, more informative than Viterbi path π*

• More refined measure of “which hidden states” generated x
– However, it may give an invalid sequence of states

• Not all j k transitions may be possible

x1 x2 x3 ………………………………………..xN

State 1
2

K

P(k)



Summary
• Generative model

– Hidden states
– Observed sequence

• ‘Running’ the model
– Generate a random sequence

• Observing a sequence
– What is the most likely path generating it?

• Viterbi algorithm
– What is the total probability generating it?

• Sum probabilities over all paths
• Forward algorithm

• Classification
– What is the probability that “CGGTACG” came from CpG+ ?

• Forward + backward algorithm
– What is the most probable state for every position

• Posterior decoding
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1. Scoring = Joint probability of a sequence and a path, given the model
– GIVEN a HMM M, a path π, and a sequence x,
– FIND Prob[ x, π | M ]

“Running the model”, simply multiply emission and transition probabilities
Application:  “all fair” vs. “all loaded” comparisons

2. Decoding = parsing a sequence into the optimal series of hidden states
– GIVEN a HMM M, and a sequence x,
– FIND the sequence π* of states that maximizes P[ x, π | M ]

Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path
3. Model evaluation = total probability of a sequence, summed across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[x | M] summed across all paths

Forward algorithm, sum score over all paths (same result as backward)
4. State likelihood = total probability that emission xi came from state k, across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[πi = k | x, M)

Posterior decoding: run forward & backward algorithms to & from state πI =k
5. Supervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x,
– FIND parameters θ = (Ei, Aij) that maximize P[ x | θ ]

Simply count frequency of each emission and transition observed in the training data
6. Unsupervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x,
– FIND parameters θ = (Ei, Aij) that maximize P[ x | θ ]

Viterbi training:  guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate
Baum-Welch training:  guess, sum over all emissions/transitions (#4), update (#5), iterate

The main questions on HMMs



5: Supervised learning

Estimate model parameters 
based on labeled training data



Two learning scenarios

Case 1. Estimation when the “right answer” is known

Examples: 
GIVEN: a genomic region x = x1…x1,000,000 where we have good 

(experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening, 
as he changes dice and produces 10,000 rolls

Case 2. Estimation when the “right answer” is unknown

Examples:
GIVEN: the porcupine genome; we don’t know how frequent are the 

CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’t see when he 
changes dice

QUESTION: Update the parameters θ of the model to maximize P(x|θ)



Case 1. When the right answer is known
Given x = x1…xN
for which the true π = π1…πN is known,

Define:

Akl = # times k→l transition occurs in π
Ek(b) = # times state k in π emits b in x

We can show that the maximum likelihood parameters θ are:

Akl Ek(b)
akl = ––––– ek(b) =   –––––––

Σi  Aki Σc Ek(c)



Case 1. When the right answer is known
Intuition: When we know the underlying states,

Best estimate is the average frequency of 
transitions & emissions that occur in the training data

Drawback:
Given little data, there may be overfitting:
P(x|θ) is maximized, but θ is unreasonable
0 probabilities – VERY BAD

Example:
Given 10 casino rolls, we observe 

x = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3
π = F, F, F, F, F, F, F, F, F, F

Then:
aFF = 1; aFL = 0
eF(1) = eF(3) = .2; 
eF(2) = .3; eF(4) = 0; eF(5) = eF(6) = .1 



Pseudocounts
Solution for small training sets:

Add pseudocounts

Akl = # times k→l transition occurs in π + rkl

Ek(b) = # times state k in π emits b in x + rk(b)

rkl, rk(b) are pseudocounts representing our prior belief

Larger pseudocounts ⇒ Strong priof belief

Small pseudocounts (ε < 1): just to avoid 0 probabilities



Pseudocounts
Example: dishonest casino

We will observe player for one day, 500 rolls 

Reasonable pseudocounts: 

r0F = r0L = rF0 = rL0 = 1;
rFL = rLF = rFF = rLL = 1;
rF(1) = rF(2) = … = rF(6) = 20 (strong belief fair is 
fair)
rF(1) = rF(2) = … = rF(6) = 5 (wait and see for 
loaded)

Above #s pretty arbitrary – assigning priors is an art



The main questions on HMMs
1. Scoring = Joint probability of a sequence and a path, given the model

– GIVEN a HMM M, a path π, and a sequence x,
– FIND Prob[ x, π | M ]

“Running the model”, simply multiply emission and transition probabilities
Application:  “all fair” vs. “all loaded” comparisons

2. Decoding = parsing a sequence into the optimal series of hidden states
– GIVEN a HMM M, and a sequence x,
– FIND the sequence π* of states that maximizes P[ x, π | M ]

Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path
3. Model evaluation = total probability of a sequence, summed across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[x | M] summed across all paths

Forward algorithm, sum score over all paths (same result as backward)
4. State likelihood = total probability that emission xi came from state k, across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[πi = k | x, M)

Posterior decoding: run forward & backward algorithms to & from state πI =k
5. Supervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x,
– FIND parameters θ = (Ei, Aij) that maximize P[ x | θ ]

Simply count frequency of each emission and transition observed in the training data
6. Unsupervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x,
– FIND parameters θ = (Ei, Aij) that maximize P[ x | θ ]

Viterbi training:  guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate
Baum-Welch training:  guess, sum over all emissions/transitions (#4), update (#5), iterate



6: Unsupervised learning

Estimate model parameters 
based on unlabeled training data



Learning case 2. When the right answer is unknown

We don’t know the true Akl, Ek(b)

Idea:

• We estimate our “best guess” on what Akl, Ek(b) are

• We update the parameters of the model, based on our guess

• We repeat



Case 2. When the right answer is unknown
Starting with our best guess of a model M, parameters θ:

Given x = x1…xN

for which the true π = π1…πN is unknown,

We can get to a provably more likely parameter set θ

Principle: EXPECTATION MAXIMIZATION

1. Estimate Akl, Ek(b) in the training data
2. Update θ according to Akl, Ek(b)
3. Repeat 1 & 2, until convergence



Estimating new parameters
To estimate Akl:

At each position i of sequence x,

Find probability transition k→l is used:

P(πi = k, πi+1 = l | x) = [1/P(x)] × P(πi = k, πi+1 = l, x1…xN) = Q/P(x)

where Q = P(x1…xi, πi = k, πi+1 = l, xi+1…xN) =
= P(πi+1 = l, xi+1…xN | πi = k) P(x1…xi, πi = k) =
= P(πi+1 = l, xi+1xi+2…xN | πi = k) fk(i) =
= P(xi+2…xN | πi+1 = l) P(xi+1 | πi+1 = l) P(πi+1 = l | πi = k) fk(i) =
= bl(i+1) el(xi+1) akl fk(i)

fk(i) akl el(xi+1) bl(i+1)
So: P(πi = k, πi+1 = l | x, θ) =   ––––––––––––––––––

P(x | θ)

(For one such transition, at time step i i+1)



Estimating new parameters

So,

fk(i) akl el(xi+1) bl(i+1)

Akl = Σi P(πi = k, πi+1 = l | x, θ) = Σi –––––––––––––––––
P(x | θ)

Similarly,

Ek(b) = [1/P(x)]Σ {i | xi = b} fk(i) bk(i)

(Sum over all k l transitions, at any time step i)



Estimating new parameters

If we have several training sequences, x1, …, xM, each of length N,

fk(i) akl el(xi+1) bl(i+1)

Akl = Σx Σi P(πi = k, πi+1 = l | x, θ) = Σx Σi ––––––––––––––––
P(x | θ)

Similarly,

Ek(b) = Σx (1/P(x))Σ {i | xi = b} fk(i) bk(i)

(Sum over all training seqs, all k l transitions, all time steps i)



The Baum-Welch Algorithm
Initialization:

Pick the best-guess for model parameters
(or arbitrary)

Iteration:
1. Forward
2. Backward
3. Calculate Akl, Ek(b)
4. Calculate new model parameters akl, ek(b)
5. Calculate new log-likelihood P(x | θ)

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until P(x | θ) does not change much



The Baum-Welch Algorithm – comments
Time Complexity:

# iterations × O(K2N)

• Guaranteed to increase the log likelihood of the model

P(θ | x) = P(x, θ) / P(x) = P(x | θ) / ( P(x) P(θ) )

• Not guaranteed to find globally best parameters

Converges to local optimum, depending on initial conditions

• Too many parameters / too large model: Overtraining



Alternative: Viterbi Training

Initialization: Same

Iteration:
1. Perform Viterbi, to find π*

2. Calculate Akl, Ek(b) according to π* + pseudocounts
3. Calculate the new parameters akl, ek(b)

Until convergence

Notes:
– Convergence is guaranteed – Why?
– Does not maximize P(x | θ)
– In general, worse performance than Baum-Welch
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1. Scoring = Joint probability of a sequence and a path, given the model
– GIVEN a HMM M, a path π, and a sequence x,
– FIND Prob[ x, π | M ]

“Running the model”, simply multiply emission and transition probabilities
Application:  “all fair” vs. “all loaded” comparisons

2. Decoding = parsing a sequence into the optimal series of hidden states
– GIVEN a HMM M, and a sequence x,
– FIND the sequence π* of states that maximizes P[ x, π | M ]

Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path
3. Model evaluation = total probability of a sequence, summed across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[x | M] summed across all paths

Forward algorithm, sum score over all paths (same result as backward)
4. State likelihood = total probability that emission xi came from state k, across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[πi = k | x, M)

Posterior decoding: run forward & backward algorithms to & from state πI =k
5. Supervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x,
– FIND parameters θ = (Ei, Aij) that maximize P[ x | θ ]

Simply count frequency of each emission and transition observed in the training data
6. Unsupervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x,
– FIND parameters θ = (Ei, Aij) that maximize P[ x | θ ]

Viterbi training:  guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate
Baum-Welch training:  guess, sum over all emissions/transitions (#4), update (#5), iterate

The main questions on HMMs
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1. Scoring = Joint probability of a sequence and a path, given the model
– GIVEN a HMM M, a path π, and a sequence x,
– FIND Prob[ x, π | M ]

“Running the model”, simply multiply emission and transition probabilities
Application:  “all fair” vs. “all loaded” comparisons

2. Decoding = parsing a sequence into the optimal series of hidden states
– GIVEN a HMM M, and a sequence x,
– FIND the sequence π* of states that maximizes P[ x, π | M ]

Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path
3. Model evaluation = total probability of a sequence, summed across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[x | M] summed across all paths

Forward algorithm, sum score over all paths (same result as backward)
4. State likelihood = total probability that emission xi came from state k, across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[πi = k | x, M)

Posterior decoding: run forward & backward algorithms to & from state πI =k
5. Supervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x,
– FIND parameters θ = (Ei, Aij) that maximize P[ x | θ ]

Simply count frequency of each emission and transition observed in the training data
6. Unsupervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x,
– FIND parameters θ = (Ei, Aij) that maximize P[ x | θ ]

Viterbi training:  guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate
Baum-Welch training:  guess, sum over all emissions/transitions (#4), update (#5), iterate

The main questions on HMMs:  Pop quiz



What have we learned ?
• Generative model

– Hidden states / Observed sequence
• ‘Running’ the model

– Generate a random sequence
• Observing a sequence

– What is the most likely path generating it?
• Viterbi algorithm

– What is the total probability generating it?
• Sum probabilities over all paths
• Forward algorithm

• Classification
– What is the probability that “CGGTACG” came from CpG+ ?

• Forward + backward algorithm
– What is the most probable state for every position

• Posterior decoding
• Training

– Estimating parameters of the HMM
– When state sequence is known

• Simply compute maximum likelihood A and E
– When state sequence is not known

• Baum-Welch:  Iterative estimation of all paths / frequencies
• Viterbi training:  Iterative estimation of best path / frequencies
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