
MIT OpenCourseWare
http://ocw.mit.edu

6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Modeling Biological Sequence
and Hidden Markov Models

(part II - The algorithms)

6.047/6.878 - Computational Biology: Genomes, Networks, Evolution

Lecture 7 Sept 25, 2008

Challenges in Computational Biology

DNA

4 Genome Assembly

6 Gene Finding9 Regulatory motif discovery

Database search3

Gene expression analysis5

RNA transcript

Sequence alignment

Evolutionary Theory10
TCATGCTAT
TCGTGATAA
TGAGGATAT
TTATCATAT
TTATGATTT

Cluster discovery4 Gibbs sampling9
Protein network analysis11

Emerging network properties13

12 Regulatory network inference

Comparative Genomics14

2

Modeling biological sequences

• Ability to generate DNA sequences of a certain type
– Not exact alignment to previously known gene
– Preserving ‘properties’ of type, not identical sequence

• Ability to recognize DNA sequences of a certain type
– What (hidden) state is most likely to have generated observations
– Find set of states and transitions that generated a long sequence

• Ability to learn distinguishing characteristics of each type
– Training our generative models on large datasets
– Learn to classify unlabelled data

Intergenic CpG
island

Promoter First
exon

Intron Other
exon

Intron

TTACAGGATTATGGGTTACAGGTAACCGTTGTACTCACCGGGTTACAGGATTATGGGTTACAGGTAACCGGTACTCACCGGGTTACAGGATTATGGTAACGGTACTCACCGGGTTACAGGATTGTTACAG
G

Markov Chains & Hidden Markov Models

• Markov Chain
– Q: states
– p: initial state probabilities
– A: transition probabilities

• HMM
– Q: states
– V: observations
– p: initial state probabilities
– A: transition probabilities
– E: emission probabilities

A+ T+

G+C+

aGTaAC

aGC

aAT
A+ T+G+C+

A: 0
C: 0
G: 1
T: 0

A: 1
C: 0
G: 0
T: 0

A: 0
C: 1
G: 0
T: 0

A: 0
C: 0
G: 0
T: 1

HMM nomenclature

1
2

K
…

1
2

K
…

1
2

K
…

…

…

…

1
2

K
…

x2 x3 xK

2
1

K

2

x1

• Find path π* that maximizes total joint probability P[x, π]

• P(x,π) = a0π1
* Πi eπi

(xi) × aπiπi+1

start emission transition

x is the
(observed)
sequence

π is the
(hidden) path

es(xi)

ast

HMM for the dishonest casino model

FAIR LOADED

0.05

0.05

0.95

eF(2) = 1/6
eF(3) = 1/6
eF(4) = 1/6
eF(5) = 1/6
eF(6) = 1/6

emissions

0.95

transitions P(πi=L|πi-1=F)
aFL

aLF

aFF

eF(1) = P(xi=1|πi=F)=1/6

aLL

eL(1) = P(xi=1|πi=L) = 1/10
eL(2) = 1/10
eL(3) = 1/10
eL(4) = 1/10
eL(5) = 1/10
eL(6) = 1/2

HMM for CpG islands

• Build a single model that combines both
Markov chains:
– ‘+’ states: A+, C+, G+, T+

• Emit symbols: A, C, G, T in CpG islands
– ‘-’ states: A-, C-, G-, T-

• Emit symbols: A, C, G, T in non-islands

• Emission probabilities distinct for the ‘+’
and the ‘-’ states
– Infer most likely set of states, giving rise

to observed emissions
‘Paint’ the sequence with + and - states

A+ T+G+C+

A- T-G-C-

A: 0
C: 0
G: 1
T: 0

A: 1
C: 0
G: 0
T: 0

A: 0
C: 1
G: 0
T: 0

A: 0
C: 0
G: 0
T: 1

A: 0
C: 0
G: 1
T: 0

A: 1
C: 0
G: 0
T: 0

A: 0
C: 1
G: 0
T: 0

A: 0
C: 0
G: 0
T: 1

Question: Why do we need so many states?
In the Dishonest Casino we only had 2 states: Fair / Loaded
Why do we need 8 states here: 4 CpG+ / 4 CpG- ?

Encode ‘memory’ of previous state: count nucleotide transitions!

PA
R

SI
N

G
SC

O
R

IN
G

LE
A

R
N

IN
G

1. Scoring = Joint probability of a sequence and a path, given the model
– GIVEN a HMM M, a path π, and a sequence x,
– FIND Prob[x, π | M]

“Running the model”, simply multiply emission and transition probabilities
Application: “all fair” vs. “all loaded” comparisons

2. Decoding = parsing a sequence into the optimal series of hidden states
– GIVEN a HMM M, and a sequence x,
– FIND the sequence π* of states that maximizes P[x, π | M]

Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path
3. Model evaluation = total probability of a sequence, summed across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[x | M] summed across all paths

Forward algorithm, sum score over all paths (same result as backward)
4. State likelihood = total prob that emission xi came from state k, across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[πi = k | x, M)

Posterior decoding: run forward & backward algorithms to & from state πI =k
5. Supervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x,
– FIND parameters θ = (ei, aij) that maximize P[x | θ]

Simply count frequency of each emission and transition observed in the training data
6. Unsupervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x,
– FIND parameters θ = (ei, aij) that maximize P[x | θ]

Viterbi training: guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate
Baum-Welch training: guess, sum over all emissions/transitions (#4), update (#5), iterate

The main questions on HMMs

1. Scoring

Multiply emissions, transitions

1. Scoring

• P(p,x) = (a0,C+* 1) * (aC+,G-* 1) * (aG-,C-* 1) * (aC-,G+* 1) * (aG+,0)

C-

C+

G-

C-

G+

C+

G+

C G C G

start end
a0,C+

aC+,G-

aG-,C-

aC-,G+

aG+,0

eG-(G)eC+(C) eC-(C) eG+(G)

Probability of given path p & observations x

The main questions on HMMs
1. Scoring = Joint probability of a sequence and a path, given the model

– GIVEN a HMM M, a path π, and a sequence x,
– FIND Prob[x, π | M]

“Running the model”, simply multiply emission and transition probabilities
Application: “all fair” vs. “all loaded” comparisons

2. Decoding = parsing a sequence into the optimal series of hidden states
– GIVEN a HMM M, and a sequence x,
– FIND the sequence π* of states that maximizes P[x, π | M]

Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path
3. Model evaluation = total probability of a sequence, summed across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[x | M] summed across all paths

Forward algorithm, sum score over all paths (same result as backward)
4. State likelihood = total probability that emission xi came from state k, across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[πi = k | x, M)

Posterior decoding: run forward & backward algorithms to & from state πI =k
5. Supervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x,
– FIND parameters θ = (Ei, Aij) that maximize P[x | θ]

Simply count frequency of each emission and transition observed in the training data
6. Unsupervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x,
– FIND parameters θ = (Ei, Aij) that maximize P[x | θ]

Viterbi training: guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate
Baum-Welch training: guess, sum over all emissions/transitions (#4), update (#5), iterate

2. Decoding:
How can we find the most likely path?

Viterbi algorithm

Finding most likely state path

• Given the observed emissions, what was the path?

A-

T-

G-

C-

A+

T+

G+

C+

A-

T-

G-

C-

A-

T-

G-

C-

A+

T+

G+

C+

A+

T+

G+

C+

A-

T-

G-

C-

A+

T+

G+

C+

C G C G

start end

Finding the most likely path

1
2

K
…

1
2

K
…

1
2

K
…

…

…

…

1
2

K
…

x2 x3 xK

2
1

K

2

x1

• Find path π* that maximizes total joint probability P[x, π]

• P(x,π) = a0π1
* Πi eπi

(xi) × aπiπi+1

start emission transition

Calculate maximum P(x,π) recursively

• Assume we know Vj for the previous time step (i-1)

• Calculate Vk(i) = ek(xi) * maxj (Vj(i-1) × ajk)

xi

ek

k
j

ajk…
…

xi-1

…
Vj(i-1)

Vk(i)hidden
states

observations

this emission Transition
from state j

max ending
in state j at step i

all possible previous states j

current max

The Viterbi Algorithm

x1 x2 x3 ………………………………………..xN

Input: x = x1……xN

Initialization:
V0(0)=1, Vk(0) = 0, for all k > 0

Iteration:
Vk(i) = eK(xi) × maxj ajk Vj(i-1)

Termination:
P(x, π*) = maxk Vk(N)

Traceback:
Follow max pointers back

In practice:
Use log scores for computation

Running time and space:
Time: O(K2N)
Space: O(KN)

State 1
2

K

Vk(i)

PA
R

SI
N

G
SC

O
R

IN
G

LE
A

R
N

IN
G

1. Scoring = Joint probability of a sequence and a path, given the model
– GIVEN a HMM M, a path π, and a sequence x,
– FIND Prob[x, π | M]

“Running the model”, simply multiply emission and transition probabilities
Application: “all fair” vs. “all loaded” comparisons

2. Decoding = parsing a sequence into the optimal series of hidden states
– GIVEN a HMM M, and a sequence x,
– FIND the sequence π* of states that maximizes P[x, π | M]

Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path
3. Model evaluation = total probability of a sequence, summed across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[x | M] summed across all paths

Forward algorithm, sum score over all paths (same result as backward)
4. State likelihood = total probability that emission xi came from state k, across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[πi = k | x, M)

Posterior decoding: run forward & backward algorithms to & from state πI =k
5. Supervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x,
– FIND parameters θ = (Ei, Aij) that maximize P[x | θ]

Simply count frequency of each emission and transition observed in the training data
6. Unsupervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x,
– FIND parameters θ = (Ei, Aij) that maximize P[x | θ]

Viterbi training: guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate
Baum-Welch training: guess, sum over all emissions/transitions (#4), update (#5), iterate

The main questions on HMMs

3. Model evaluation:
Total P(x|M), summed over all paths

Forward algorithm

Simple: Given the model, generate some sequence x

Given a HMM, we can generate a sequence of length n as follows:
1. Start at state π1 according to prob a0π1

2. Emit letter x1 according to prob eπ1(x1)
3. Go to state π2 according to prob aπ1π2

4. … until emitting xn

1

2

K
…

1

2

K
…

1

2

K
…

…

…

…

1

2

K
…

x1 x2 x3 xn

2

1

K

2
0

e2(x1)

a02

Complex: Given x, was it generated by the model?

Given a sequence x,
What is the probability that x was generated by the model (using any path)?

– P(x) = Σπ P(x,π)

• Challenge: exponential number of paths

• (cheap) alternative:
– Calculate probability over maximum (Viterbi) path π*

• (real) solution
– Calculate sum iteratively using dynamic programming

1
2

K
…

1
2

K
…

1
2

K
…

…

…

…

1
2

K
…

x1 x2 x3 xn

2
1

K

2
0

e2(x1)

a02

The Forward Algorithm – derivation
Define the forward probability:

fl(i) = P(x1…xi, πi = l)

= Σπ1…πi-1 P(x1…xi-1, π1,…, πi-2, πi-1, πi = l) el(xi)

= Σk Σπ1…πi-2 P(x1…xi-1, π1,…, πi-2, πi-1=k) akl el(xi)

= Σk fk(i-1) akl el(xi)

= el(xi) Σk fk(i-1) akl

Calculate total probability Σπ P(x,π) recursively

• Assume we know fj for the previous time step (i-1)

• Calculate fk(i) = ek(xi) * sumj (fj(i-1) × ajk)

xi

ek

k
j

ajk…
…

xi-1

…
fj(i-1)

fk(i)hidden
states

observations

this emission transition
from state j

sum ending
in state j at step i

every possible previous state j

current max

The Forward Algorithm

x1 x2 x3 ………………………………………..xN

Input: x = x1……xN

Initialization:
f0(0)=1, fk(0) = 0, for all k > 0

Iteration:
fk(i) = eK(xi) × sumj ajk fj(i-1)

Termination:
P(x, π*) = sumk fk(N)

In practice:
Sum of log scores is difficult

approximate exp(1+p+q)
scaling of probabilities

Running time and space:
Time: O(K2N)
Space: O(KN)

State 1
2

K

fk(i)

Summary
• Generative model

– Hidden states
– Observed sequence

• ‘Running’ the model
– Generate a random sequence

• Observing a sequence
– What is the most likely path generating it?

• Viterbi algorithm
– What is the total probability generating it?

• Sum probabilities over all paths
• Forward algorithm

• Next: Classification
– What is the probability that “CGGTACG” came from CpG+ ?

The main questions on HMMs
1. Scoring = Joint probability of a sequence and a path, given the model

– GIVEN a HMM M, a path π, and a sequence x,
– FIND Prob[x, π | M]

“Running the model”, simply multiply emission and transition probabilities
Application: “all fair” vs. “all loaded” comparisons

2. Decoding = parsing a sequence into the optimal series of hidden states
– GIVEN a HMM M, and a sequence x,
– FIND the sequence π* of states that maximizes P[x, π | M]

Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path
3. Model evaluation = total probability of a sequence, summed across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[x | M] summed across all paths

Forward algorithm, sum score over all paths (same result as backward)
4. State likelihood = total probability that emission xi came from state k, across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[πi = k | x, M)

Posterior decoding: run forward & backward algorithms to & from state πI =k
5. Supervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x,
– FIND parameters θ = (Ei, Aij) that maximize P[x | θ]

Simply count frequency of each emission and transition observed in the training data
6. Unsupervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x,
– FIND parameters θ = (Ei, Aij) that maximize P[x | θ]

Viterbi training: guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate
Baum-Welch training: guess, sum over all emissions/transitions (#4), update (#5), iterate

4. State likelihood

Find the likelihood an emission xi is
generated by a state

Calculate P(π7= CpG+ | x7=G)

• With no knowledge (no characters)
– P(πi=k) = most likely state (prior)
– Time spent in markov chain states

• With very little knowledge (just that character)
– P(πi=k | xi=G) = (prior) * (most likely emission)
– Emission probabilities adjusted for time spent

• With knowledge of entire sequence (all characters)
– P(πi=k | x=AGCGCG…GATTATCGTCGTA)
– Sum over all paths that emit ‘G’ at position 7

Posterior decoding

Motivation for the Backward Algorithm

We want to compute

P(πi = k | x), the probability distribution on the ith position, given x

We start by computing

P(πi = k, x) = P(x1…xi, πi = k, xi+1…xN)
= P(x1…xi, πi = k) P(xi+1…xN | x1…xi, πi = k)
= P(x1…xi, πi = k) P(xi+1…xN | πi = k)

Forward, fk(i) Backward, bk(i)

The Backward Algorithm – derivation
Define the backward probability:

bk(i) = P(xi+1…xN | πi = k)
= Σπi+1…πN P(xi+1,xi+2, …, xN, πi+1, …, πN | πi = k)
= Σl Σπi+1…πN P(xi+1,xi+2, …, xN, πi+1 = l, πi+2, …, πN | πi = k)
= Σl el(xi+1) akl Σπi+1…πN P(xi+2, …, xN, πi+2, …, πN | πi+1 = l)
= Σl el(xi+1) akl bl(i+1)

Calculate total end probability recursively

• Assume we know bl for the next time step (i+1)

• Calculate bk(i) = suml (el(xi+1) × akl × bl(i+1))

xi+1

el

l
k

akl

…

…

xi

…bk(i)
bl(i+1)

hidden
states

observations

next
emission

transition
to next state

prob sum from
state l to end

sum over all possible next states

current max

The Backward Algorithm

x1 x2 x3 ………………………………………..xN

Input: x = x1……xN

Initialization:
bk(N) = ak0, for all k

Iteration:
bk(i) = Σl el(xi+1) akl bl(i+1)

Termination:
P(x) = Σl a0l el(x1) bl(1)

In practice:
Sum of log scores is difficult

approximate exp(1+p+q)
scaling of probabilities

Running time and space:
Time: O(K2N)
Space: O(KN)

State 1
2

K

bk(i)

Putting it all together: Posterior decoding

• P(k) = P(πi=k | x) = fk(i)*bk(i) / P(x)
– Probability that ith state is k, given all emissions x

• Posterior decoding
– Define most likely state for every of sequence x
– π^

i = argmaxk P(πi = k | x)
• Posterior decoding ‘path’ π^

i
– For classification, more informative than Viterbi path π*

• More refined measure of “which hidden states” generated x
– However, it may give an invalid sequence of states

• Not all j k transitions may be possible

x1 x2 x3 ………………………………………..xN

State 1
2

K

P(k)

Summary
• Generative model

– Hidden states
– Observed sequence

• ‘Running’ the model
– Generate a random sequence

• Observing a sequence
– What is the most likely path generating it?

• Viterbi algorithm
– What is the total probability generating it?

• Sum probabilities over all paths
• Forward algorithm

• Classification
– What is the probability that “CGGTACG” came from CpG+ ?

• Forward + backward algorithm
– What is the most probable state for every position

• Posterior decoding

PA
R

SI
N

G
SC

O
R

IN
G

LE
A

R
N

IN
G

1. Scoring = Joint probability of a sequence and a path, given the model
– GIVEN a HMM M, a path π, and a sequence x,
– FIND Prob[x, π | M]

“Running the model”, simply multiply emission and transition probabilities
Application: “all fair” vs. “all loaded” comparisons

2. Decoding = parsing a sequence into the optimal series of hidden states
– GIVEN a HMM M, and a sequence x,
– FIND the sequence π* of states that maximizes P[x, π | M]

Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path
3. Model evaluation = total probability of a sequence, summed across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[x | M] summed across all paths

Forward algorithm, sum score over all paths (same result as backward)
4. State likelihood = total probability that emission xi came from state k, across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[πi = k | x, M)

Posterior decoding: run forward & backward algorithms to & from state πI =k
5. Supervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x,
– FIND parameters θ = (Ei, Aij) that maximize P[x | θ]

Simply count frequency of each emission and transition observed in the training data
6. Unsupervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x,
– FIND parameters θ = (Ei, Aij) that maximize P[x | θ]

Viterbi training: guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate
Baum-Welch training: guess, sum over all emissions/transitions (#4), update (#5), iterate

The main questions on HMMs

5: Supervised learning

Estimate model parameters
based on labeled training data

Two learning scenarios

Case 1. Estimation when the “right answer” is known

Examples:
GIVEN: a genomic region x = x1…x1,000,000 where we have good

(experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening,
as he changes dice and produces 10,000 rolls

Case 2. Estimation when the “right answer” is unknown

Examples:
GIVEN: the porcupine genome; we don’t know how frequent are the

CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’t see when he
changes dice

QUESTION: Update the parameters θ of the model to maximize P(x|θ)

Case 1. When the right answer is known
Given x = x1…xN
for which the true π = π1…πN is known,

Define:

Akl = # times k→l transition occurs in π
Ek(b) = # times state k in π emits b in x

We can show that the maximum likelihood parameters θ are:

Akl Ek(b)
akl = ––––– ek(b) = –––––––

Σi Aki Σc Ek(c)

Case 1. When the right answer is known
Intuition: When we know the underlying states,

Best estimate is the average frequency of
transitions & emissions that occur in the training data

Drawback:
Given little data, there may be overfitting:
P(x|θ) is maximized, but θ is unreasonable
0 probabilities – VERY BAD

Example:
Given 10 casino rolls, we observe

x = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3
π = F, F, F, F, F, F, F, F, F, F

Then:
aFF = 1; aFL = 0
eF(1) = eF(3) = .2;
eF(2) = .3; eF(4) = 0; eF(5) = eF(6) = .1

Pseudocounts
Solution for small training sets:

Add pseudocounts

Akl = # times k→l transition occurs in π + rkl

Ek(b) = # times state k in π emits b in x + rk(b)

rkl, rk(b) are pseudocounts representing our prior belief

Larger pseudocounts ⇒ Strong priof belief

Small pseudocounts (ε < 1): just to avoid 0 probabilities

Pseudocounts
Example: dishonest casino

We will observe player for one day, 500 rolls

Reasonable pseudocounts:

r0F = r0L = rF0 = rL0 = 1;
rFL = rLF = rFF = rLL = 1;
rF(1) = rF(2) = … = rF(6) = 20 (strong belief fair is
fair)
rF(1) = rF(2) = … = rF(6) = 5 (wait and see for
loaded)

Above #s pretty arbitrary – assigning priors is an art

The main questions on HMMs
1. Scoring = Joint probability of a sequence and a path, given the model

– GIVEN a HMM M, a path π, and a sequence x,
– FIND Prob[x, π | M]

“Running the model”, simply multiply emission and transition probabilities
Application: “all fair” vs. “all loaded” comparisons

2. Decoding = parsing a sequence into the optimal series of hidden states
– GIVEN a HMM M, and a sequence x,
– FIND the sequence π* of states that maximizes P[x, π | M]

Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path
3. Model evaluation = total probability of a sequence, summed across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[x | M] summed across all paths

Forward algorithm, sum score over all paths (same result as backward)
4. State likelihood = total probability that emission xi came from state k, across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[πi = k | x, M)

Posterior decoding: run forward & backward algorithms to & from state πI =k
5. Supervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x,
– FIND parameters θ = (Ei, Aij) that maximize P[x | θ]

Simply count frequency of each emission and transition observed in the training data
6. Unsupervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x,
– FIND parameters θ = (Ei, Aij) that maximize P[x | θ]

Viterbi training: guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate
Baum-Welch training: guess, sum over all emissions/transitions (#4), update (#5), iterate

6: Unsupervised learning

Estimate model parameters
based on unlabeled training data

Learning case 2. When the right answer is unknown

We don’t know the true Akl, Ek(b)

Idea:

• We estimate our “best guess” on what Akl, Ek(b) are

• We update the parameters of the model, based on our guess

• We repeat

Case 2. When the right answer is unknown
Starting with our best guess of a model M, parameters θ:

Given x = x1…xN

for which the true π = π1…πN is unknown,

We can get to a provably more likely parameter set θ

Principle: EXPECTATION MAXIMIZATION

1. Estimate Akl, Ek(b) in the training data
2. Update θ according to Akl, Ek(b)
3. Repeat 1 & 2, until convergence

Estimating new parameters
To estimate Akl:

At each position i of sequence x,

Find probability transition k→l is used:

P(πi = k, πi+1 = l | x) = [1/P(x)] × P(πi = k, πi+1 = l, x1…xN) = Q/P(x)

where Q = P(x1…xi, πi = k, πi+1 = l, xi+1…xN) =
= P(πi+1 = l, xi+1…xN | πi = k) P(x1…xi, πi = k) =
= P(πi+1 = l, xi+1xi+2…xN | πi = k) fk(i) =
= P(xi+2…xN | πi+1 = l) P(xi+1 | πi+1 = l) P(πi+1 = l | πi = k) fk(i) =
= bl(i+1) el(xi+1) akl fk(i)

fk(i) akl el(xi+1) bl(i+1)
So: P(πi = k, πi+1 = l | x, θ) = ––––––––––––––––––

P(x | θ)

(For one such transition, at time step i i+1)

Estimating new parameters

So,

fk(i) akl el(xi+1) bl(i+1)

Akl = Σi P(πi = k, πi+1 = l | x, θ) = Σi –––––––––––––––––
P(x | θ)

Similarly,

Ek(b) = [1/P(x)]Σ {i | xi = b} fk(i) bk(i)

(Sum over all k l transitions, at any time step i)

Estimating new parameters

If we have several training sequences, x1, …, xM, each of length N,

fk(i) akl el(xi+1) bl(i+1)

Akl = Σx Σi P(πi = k, πi+1 = l | x, θ) = Σx Σi ––––––––––––––––
P(x | θ)

Similarly,

Ek(b) = Σx (1/P(x))Σ {i | xi = b} fk(i) bk(i)

(Sum over all training seqs, all k l transitions, all time steps i)

The Baum-Welch Algorithm
Initialization:

Pick the best-guess for model parameters
(or arbitrary)

Iteration:
1. Forward
2. Backward
3. Calculate Akl, Ek(b)
4. Calculate new model parameters akl, ek(b)
5. Calculate new log-likelihood P(x | θ)

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until P(x | θ) does not change much

The Baum-Welch Algorithm – comments
Time Complexity:

iterations × O(K2N)

• Guaranteed to increase the log likelihood of the model

P(θ | x) = P(x, θ) / P(x) = P(x | θ) / (P(x) P(θ))

• Not guaranteed to find globally best parameters

Converges to local optimum, depending on initial conditions

• Too many parameters / too large model: Overtraining

Alternative: Viterbi Training

Initialization: Same

Iteration:
1. Perform Viterbi, to find π*

2. Calculate Akl, Ek(b) according to π* + pseudocounts
3. Calculate the new parameters akl, ek(b)

Until convergence

Notes:
– Convergence is guaranteed – Why?
– Does not maximize P(x | θ)
– In general, worse performance than Baum-Welch

PA
R

SI
N

G
SC

O
R

IN
G

LE
A

R
N

IN
G

1. Scoring = Joint probability of a sequence and a path, given the model
– GIVEN a HMM M, a path π, and a sequence x,
– FIND Prob[x, π | M]

“Running the model”, simply multiply emission and transition probabilities
Application: “all fair” vs. “all loaded” comparisons

2. Decoding = parsing a sequence into the optimal series of hidden states
– GIVEN a HMM M, and a sequence x,
– FIND the sequence π* of states that maximizes P[x, π | M]

Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path
3. Model evaluation = total probability of a sequence, summed across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[x | M] summed across all paths

Forward algorithm, sum score over all paths (same result as backward)
4. State likelihood = total probability that emission xi came from state k, across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[πi = k | x, M)

Posterior decoding: run forward & backward algorithms to & from state πI =k
5. Supervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x,
– FIND parameters θ = (Ei, Aij) that maximize P[x | θ]

Simply count frequency of each emission and transition observed in the training data
6. Unsupervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x,
– FIND parameters θ = (Ei, Aij) that maximize P[x | θ]

Viterbi training: guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate
Baum-Welch training: guess, sum over all emissions/transitions (#4), update (#5), iterate

The main questions on HMMs

PA
R

SI
N

G
SC

O
R

IN
G

LE
A

R
N

IN
G

1. Scoring = Joint probability of a sequence and a path, given the model
– GIVEN a HMM M, a path π, and a sequence x,
– FIND Prob[x, π | M]

“Running the model”, simply multiply emission and transition probabilities
Application: “all fair” vs. “all loaded” comparisons

2. Decoding = parsing a sequence into the optimal series of hidden states
– GIVEN a HMM M, and a sequence x,
– FIND the sequence π* of states that maximizes P[x, π | M]

Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path
3. Model evaluation = total probability of a sequence, summed across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[x | M] summed across all paths

Forward algorithm, sum score over all paths (same result as backward)
4. State likelihood = total probability that emission xi came from state k, across all paths

– GIVEN a HMM M, a sequence x
– FIND the total probability P[πi = k | x, M)

Posterior decoding: run forward & backward algorithms to & from state πI =k
5. Supervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x,
– FIND parameters θ = (Ei, Aij) that maximize P[x | θ]

Simply count frequency of each emission and transition observed in the training data
6. Unsupervised learning = optimize parameters of a model given training data

– GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x,
– FIND parameters θ = (Ei, Aij) that maximize P[x | θ]

Viterbi training: guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate
Baum-Welch training: guess, sum over all emissions/transitions (#4), update (#5), iterate

The main questions on HMMs: Pop quiz

What have we learned ?
• Generative model

– Hidden states / Observed sequence
• ‘Running’ the model

– Generate a random sequence
• Observing a sequence

– What is the most likely path generating it?
• Viterbi algorithm

– What is the total probability generating it?
• Sum probabilities over all paths
• Forward algorithm

• Classification
– What is the probability that “CGGTACG” came from CpG+ ?

• Forward + backward algorithm
– What is the most probable state for every position

• Posterior decoding
• Training

– Estimating parameters of the HMM
– When state sequence is known

• Simply compute maximum likelihood A and E
– When state sequence is not known

• Baum-Welch: Iterative estimation of all paths / frequencies
• Viterbi training: Iterative estimation of best path / frequencies

	Modeling Biological Sequence�and Hidden Markov Models��(part II - The algorithms)
	Modeling biological sequences
	Markov Chains & Hidden Markov Models
	HMM nomenclature
	HMM for the dishonest casino model
	HMM for CpG islands
	The main questions on HMMs
	1. Scoring
	1. Scoring
	The main questions on HMMs
	2. Decoding: �How can we find the most likely path?
	Finding most likely state path
	Finding the most likely path
	Calculate maximum P(x,) recursively
	The Viterbi Algorithm
	The main questions on HMMs
	3. Model evaluation: �Total P(x|M), summed over all paths
	Simple: Given the model, generate some sequence x
	Complex: Given x, was it generated by the model?
	The Forward Algorithm – derivation
	Calculate total probability Σπ P(x,) recursively
	The Forward Algorithm
	Summary
	The main questions on HMMs
	4. State likelihood
	Calculate P(π7= CpG+ | x7=G)
	Motivation for the Backward Algorithm
	The Backward Algorithm – derivation
	Calculate total end probability recursively
	The Backward Algorithm
	Putting it all together: Posterior decoding
	Summary
	The main questions on HMMs
	5: Supervised learning
	Two learning scenarios
	Case 1.	When the right answer is known
	Case 1.	When the right answer is known
	Pseudocounts
	Pseudocounts
	The main questions on HMMs
	6: Unsupervised learning
	Learning case 2.	When the right answer is unknown
	Case 2.	When the right answer is unknown
	Estimating new parameters
	Estimating new parameters
	Estimating new parameters
	The Baum-Welch Algorithm
	The Baum-Welch Algorithm – comments
	Alternative: Viterbi Training
	The main questions on HMMs
	The main questions on HMMs: Pop quiz
	What have we learned ?

