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6.047/6.878 Lecture 7: HMMs II, September 25, 2008

October 1, 2008 

The previous lecture introduced hidden Markov models (HMMs), a technique used to 
infer “hidden” information such as whether a particular nucleotide is part of the coding 
sequence of a gene, from observable information, such as the sequence of nucleotides. Recall 
that a Markov chain consists of states Q, initial state probabilities p, and state transition 
probabilities A. The key assumption that makes the chain a Markov chain is that the 
probability of going to a particular state depends only on the previous state, not on all the 
ones before that. A hidden Markov model has the additional property of emitting a series 
of observable outputs, one from each state, with various emission probabilities E. Because 
the observations do not allow one to uniquely infer the states, the model is “hidden.” 

The principle we used to determine hidden states in an HMM was the same as the 
principle used for sequence alignment. In alignment, we had an exponential number of 
possible sequences; in the HMM matching problem, we have an exponential number of 
possible parse sequences, i.e., choices of generating states. Indeed, in an HMM with k states, 
at each position we can be in any of k states; hence, for a sequence of length n, there are 
kn possible parses. As we have seen, in both cases we nonetheless avoid actually doing 
exponential work by using dynamic programming. 

HMMs present several problems of interest beyond simply finding the optimal parse 
sequence, however. So far, we have discussed the Viterbi decoding algorithm for finding the 
single optimal path that could have generated a given sequence, and scoring (i.e., computing 
the probability of) such a path. We also discussed the Forward algorithm for computing 
the total probability of a given sequence being generated by a particular HMM over all 
possible state paths that could have generated it; the method is yet another application 
of dynamic programming. One motivation for computing this probability is the desire to 
measure the accuracy of a model. Being able to compute the total probability of a sequence 
allows us to compare alternate models by asking the question: “Given a portion of a genome, 
how likely is it that each HMM produced this sequence?” 

Although we now know the Viterbi decoding algorithm for finding the single optimal 
path, we will talk about another notion of decoding known as posterior decoding, which 
finds the most likely state at any position of a sequence (given the knowledge that our HMM 
produced the entire sequence). The posterior decoding algorithm will apply both the forward 
algorithm and the closely related backward algorithm. After this discussion, we will pause 
for an aside on encoding “memory” in a Markov chain before moving on to cover learning 
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algorithms: that is, given a sequence and an HMM structure, how to choose parameters 
for that HMM which best describe the sequence. 

1 The backward algorithm 

In analogy with the forward algorithm discussed last time, we may define a backward al­
gorithm with only slight changes. This time, given a starting position in the sequence and 
the current state of the HMM—i.e., a certain square in the dynamic programming table— 
we compute the total probability of reaching the end of the sequence, taken over all paths 
leaving the chosen square. 

In other words, we calculate: 

bk(i) = P (xi+1...xN |πi = k) 

This can be done iteratively using a recurrence similar to the forward recurrence; we do 
not elaborate on the details, but they are provided in the lecture slides. In this case, after 
the algorithm finishes, we can obtain the total probability of the HMM generating the given 
sequence by summing over the states in the first column. 

One might wonder why the backward algorithm is useful given that we already know 
how to compute total probability using the forward algorithm. One simple reason is that 
the backward algorithm provides a check against numerical errors, but more interestingly, 
combining our knowledge from the forward and backward algorithms allows us to find the 
probability of the HMM being in a given state at any position of the sequence. This is called 
posterior decoding, which is the topic of the next section. 

2 Posterior decoding 

In contrast to the Viterbi optimal sequence of states, which finds the most likely path of 
states that could have generated the input sequence X, posterior decoding finds a sequence 
π of states such that at each individual position i, the decoded state πi is the most likely 
(given the HMM and the assumption it generated X). Note that posterior decoding is thus 
not a “path decoding” algorithm: the “path” it produces will be less likely than the Viterbi 
optimal path; indeed, it may even be nonsensical, for example if two consecutive states have 
a zero transition probability. 

Formally, the difference between Viterbi and posterior decoding is that in position i, the 
Viterbi algorithm calculates 

πi 
∗ = i-th position of argmaxπ P (X, π) 

whereas posterior decoding calculates 

π^ i = argmaxk P (πi = k|X), 
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where � 1 
P (πi = k|X) = P (X, π) · 

P (X) 
. 

π:{πi=k} 

The term π:{πi=k} P (X, π) expresses the sum of the probabilities of all paths producing X 
that pass through state k in position i. 

Since P (X) is independent of k, dividing by it does not affect the argmax, so we can 
write: � 

π^ i = argmaxk P (X, π) 
π:{πi=k} 

Recall that P (X) was calculated by the forward algorithm using the recursion for 

fk(i) = P (x1...xi, πi = k) 

given on the right-middle slide of page 3. A simple way to calculate π:{πi=k} P (X, π) would 
be to use this same recursion, except at the i + 1 step instead of summing over all states just 
use state k. The problem with this is that if we wanted to calculate π^ we would need to do 
this calculation for all i and all k. 

The key observation is that 

P (X, π) = P (πi = k,X) = P (x1...xi, πi = k)P (xi+1...xN |πi = k) = fk(i) · bk(i) 
π:{πi=k} 

so we can obtain all of these sums at once by running the forward and backward algorithms 
and multiplying the values in the corresponding cells! Thus, computing the optimal π^ i 
amounts only to testing each of the K possible states and choosing the one with maximum 
probability. 

Which of Viterbi or posterior decoding is better for real applications? The answer depends 
partly on how likely the Viterbi optimal path is (i.e., on how much of the probability mass is 
concentrated on it compared to other paths): if the optimal path is only marginally better 
than alternatives, posterior decoding is probably more useful. Additionally, the application 
itself plays a crucial role in determining the algorithm to apply. For example, if a biologist had 
identified a possible promoter region but wanted to be more sure before running experiments, 
he or she might wish to apply posterior decoding to estimate the likelihood (taking into 
account all possible paths) that the region of interest was indeed a promoter region. There are 
other examples, however, in which Viterbi decoding is more appropriate. Some applications 
even combine the two algorithms. 

3 Encoding memory in an HMM 

Before moving on to discussing learning, we pause to describe an application of HMMs 
requiring a new trick: incorporating “memory” into a Markov model by increasing the 
number of states. First we present a motivating biological example. 
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Recall that in the previous lecture, we built an HMM with two states: a “high-CG” 
promoter state with elevated probabilities of emitting Cs and Gs, and a background state 
with uniform probabilities of emitting all nucleotides. Thus, our previous model, which we 
will call HMM1, characterized promoters simply by abundance of Cs and Gs. However, in 
reality the situation is more complicated. As we shall see, a more accurate model, which we 
call HMM2, would instead monitor the abundance of CpG pairs, i.e., C and G nucleotides on 
the same strand (separated by a phosphate on the DNA backbone, hence the name “CpG”). 
Note that we call these CpGs simply to avoid confusion with bonded complementary C–G 
bases (on opposing strands). 

Some biological background will shed light on the reason for introducing HMM2. In 
the genome, not only the sequence of bases, but also their methylation states determine 
the biological processes that act on DNA. That is, a methyl group can be added to a nu­
cleotide, thus marking it for future reference. Proteins that later bind to the DNA (e.g., for 
transcription or replication purposes) “notice” such modifications that have been made to 
particular bases. To elaborate on one interesting example, methylation allows error-checking 
in the DNA replication process. Recall that replication is performed by “unzipping” the 
DNA polymer and then rebinding complementary bases to each strand, resulting in a pair 
of new double-stranded DNA helices. If, during this process, a discrepancy is found between 
an old strand of DNA and a new strand (i.e., a pair of bases is not complementary), then 
the old—correct—base is identified by its being methylated. Thus, the new, unmethylated 
base can be removed and replaced with a base actually complementary to the original one. 

Now, a side effect of methylation is that in a CpG pair, a methylated C has a high chance 
of mutating to a T. Hence, dinucleotide CpGs are rare throughout the genome. However, in 
active promoter regions, methylation is suppressed, resulting in a greater abundance of CpG 
dinucleotides. Such regions are called CpG islands. These few hundred to few thousand 
base-long islands thus allow us to identify promoters with greater accuracy than classifying 
by abundance of Cs and Gs alone. 

All of this raises the question of how to encode dinucleotides in a Markov model, which by 
definition is “memoryless”: the next state depends only on the current state via predefined 
transition probabilities. Fortunately, we can overcome this barrier simply by increasing the 
number of states in our Markov model (thus increasing the information stored in a single 
state). That is, we encode in a state all the information we need to remember in order to 
know how to move to the next state. In general, if we have an “almost HMM” that determines 
transition probabilities based not only on the single previous state but also on a finite history 
(possibly of both states and emissions), we can convert this to a true memoryless HMM by 
increasing the number of states. 

In our particular example, we wish to create HMM2 such that dinucleotide CpGs have 
high frequency in promoter states and low frequency in the background. To do this, we use 
eight states rather than just two, with each state encoding both the promoter/background 
state as well as the current emission. We thus need to specify an 8 × 8 table of transition 
probabilities. (Note, however, that each emission probability from a given state is now either 
0 or 1, since the state already contains the information of which nucleotide to emit.) Details 
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of this construction are included in the lecture slides. (But note that on the middle-right slide 
on page 4 it incorrectly states that the emissions probabilities are distinct for the + and ­
states. It is actually the transition probabilities that are different – the emission probabilities 
are just 0 and 1 in both cases.) 

Although an 8 state model would normally have 64 transition probabilities the slides show 
only 32; transition probabilities between + and - states are not included. Since transitions to 
and from CpG islands are relatively rare it would require a very large amount of training data 
to infer what all of these probabilities are. A simplification is to assume that all transition 
probabilities from a + state to a - state are the same, regardless of the nucleotides between 
which we are transitioning, and to similarly assume a single probability for transitions from 
a - to a + state. In that case we would need these two transition parameters in addition 
to the 16 shown on the slides. If our assumptions turn out to be biologically incorrect then 
more parameters would be needed to have an accurate model. 

During lecture someone pointed out that the transition probabilities given in the table 
at the middle-left slide of page 4 are different depending on which strand you are moving 
along. For example, when one strand transitions from T to C, the other transitions from G 
to A, yet the numbers in the table are quite different (.355 and .161). This seemed to imply 
that a different HMM is needed to predict CpG islands depending on which strand you are 
moving along. However, this reasoning was not correct. For a single HMM to work on either 
strand it must produce the same frequency of TpCs on one strand as GpAs on the other. 
However, the frequency of TpC’s is not simply the probability of transitioning from T to C. 
Rather this transition probability must be multiplied by the frequency of T. We calculate 
based on the transition probabilities in the ’+’ table that this HMM would produce As and 
Ts with frequency about 15% and Cs and Gs with frequency about 35%. This calculation 
is in Appendix 1. When this is taken into account the probabilities on the two strands are 
within around 7% of each other. For example, the frequency of TpCs is 0.15*0.355 = 0.0525, 
while the frequency of GpAs is 0.35*0.161 = 0.05635. We will chalk this difference up to 
sampling error. 

4 Learning 

The final topic of this lecture is learning, i.e., having a machine figure out how to model 
data. The word ‘learning’ must be taken with a grain of salt. We do not give a machine 
raw data and nothing else and expect it to figure out how to model this data from scratch. 
Rather, we must use our intuition and knowledge of biology to come up with the general 
framework of the model. Then we ask the machine to choose parameters for our model. 

More specifically, given a training sequence and an HMM with known layout but unspec­
ified parameters, how does one infer the best choice of parameters? This general class of 
problems splits naturally into two subclasses based on a whether or not we know the hidden 
states in our training data. 

For example, if we have a hidden Markov model to distinguish coding regions of genes 
from other stretches of DNA, we might train our model with a sequence in which coding 
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genes have already been identified using other means. We would supply this information 
for supervised learning. On the other hand, we might be working with a DNA sequence for 
an organism that has not had any genes classified and that we expect would have different 
parameter values from any that have already been classified. In that case, we could use 
unsupervised learning to infer the parameters without our having to specify the genes in our 
training data. 

4.1 Supervised learning 

In this case we assume we are given the layout of the HMM, an emitted sequence X, and 
additionally the actual sequence of Markov states π that produced X. In other words, our 
training data is labeled). We wish to find the transition and emission probabilities a and e 
maximizing the probability P (X, π) of generating the sequence X and labels π. 

This version of learning is easy: since we already know the path π of states the Markov 
chain took, our intuition suggests that we should choose parameters proportional to the 
observed frequencies of the corresponding events occurring. With i denoting position, k and 
l denoting states, and x denoting a base, we optimally set 

# of times πi = k and x emitted 
e(k, x) = 

# of times πi = k 

and 
# of times πi−1 = k and πi = l 

a(k, l) = . 
# of times πi−1 = k 

An example is given in the slide at the top-right of page 7. The counts are slightly 
different depending on whether you consider the start and end to be separate states. If we 
ignore the start and end then, for example, a(B, P ) = 0.25 since of the 4 B states (we are 
excluding the final one) there is exactly 1 that transitions to a P state. If we considered the 
end to be a separate state then a(B, P ) would be 0.2, since we consider the final B state as 
transitioning to the end state. Similarly, we calculate e(B, C) = 0.4 because 2 of the 5 B 
states emit a C. 

We can use Lagrange multipliers to verify our intuition that the transition and emission 
probabilities a and e obtained by counting maximize the probability P (X, π) of generating 
the sequence X and labels π. This calculation is done appendix 2. 

In addition the initial state probabilities of the HMM need to be specified. We choose 
these as the total frequency of each state in the training data. 

A problem with the method of setting probabilities using our training data is that counts 
of some transitions and emissions might be 0 even though the actual probability is small but 
non-zero. If we do not correct this our HMM will consider these transitions and emissions to 
be impossible, which could significantly distort the results. To fix this we add ‘pseudocounts’ 
which are small non-zero counts. For example, we could set these counts to be 1, or we could 
make an estimate based on the a-priori probabilities. 
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4.2 Unsupervised learning 

Now we assume we are given the HMM layout and sequence X and wish to find parameters 
a, e maximizing P (X) = π P (X, π). Note that X is now unlabeled: that is, we have no 
knowledge of π to begin with. 

The idea is we start with some initial guess for the parameter values, use those parameter 
values to obtain values (or probabilities) of the hidden states, use those to calculate new 
parameter values, and iterate until convergence. 

Our initial guess for the parameters might be guided by other knowledge. For example, 
when working with a DNA sequence we might start with parameter values from a related 
species for which we have an annotated genome (for which parameters could be obtained 
using supervised learning). Or, we might just use arbitrary initial parameters. (The slide 
on Viterbi Training on page 8 describes initialization as ’Same’. This is a reference to 
initialization in the Baum-Welch algorithm slide on page 10.) 

The lecture presented two methods of implementing unsupervised learning, Viterbi Train­
ing and the Baum-Welch Algorithm. Although Baum-Welch is theoretically more sound 
Viterbi training is simpler so we discuss it first. 

Rather than maximizing P (X) = π P (X, π), at each step Viterbi training uses π∗, 
the most-likely path. Since there are other paths and π∗ usually only captures some of the 
probability this is not the same as maximizing P (X), which would require looking at all 
paths. 

In Viterbi training we use the Viterbi algorithm to find π∗ given the current parameter 
values. We then use this path to estimate the coefficients a, e in the same way we used the 
known path in supervised learning – by counting emissions and transitions from each state. 
These counts, adjusted by pseudocounts, are then used to calculate new parameter values, 
and we repeat until convergence. 

Side note: Posterior decoding can be used instead of the Viterbi algorithm, provided 
you use non-zero parameters so all transitions are legal. This still uses only one path for 
counting, but it is π^ instead of π∗. 

In supervised learning and in Viterbi training we count frequencies in a single path to 
estimate our parameters a and e. But for particular parameter values the model determines 
probabilities for every state at each position, not just a single state. How can we take all of 
these probabilities into account when estimating our parameters, rather than just a single 
value at each position? That is what the Baum-Welch algorithm does. 

The basic framework of the Baum-Welch algorithm is the same as for Viterbi training. 
In both cases we start with an initial guess for parameter values, use those to gather infor­
mation about the hidden states, and then use that information to calculate new parameter 
values. The difference is that rather than determining the counts of transitions and emis­
sions, Akl, Ek(b) by counting actual transitions and emissions in a particular path we do so 
by adding up probabilities over all possible paths. 

For Akl, instead of counting the number of places where state k is immediately followed 
by state l, we add up, for all positions i, the probability that position i is in state k and 
position i + 1 is in state l . To do this we must add up the probabilities of all paths that 
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pass through states k and l at positions i and i + 1, respectively. 
This is very similar to the sum we calculated in posterior decoding, except we are spec­

ifying the states at two consecutive positions instead of one. As in posterior decoding it 
uses f and b calculated by the forward and backward algorithms, but instead of just taking 
fk(i) bk(i) it must take fk(i) bk(i + 1) times an intermediate term that has to do with the · · 
transition from position i to position i + 1. This calculation is shown on the lower left slide 
of page 9. These must be summed over all positions i to calculate Akl. A similar method is 
used to calculate Ek(b), again using f and b. 

A result of Baum-Welch guarantees convergence. A formal proof can be obtained by 
using the principle of expectation maximization. 

Although this method is guaranteed to converge, it could converge to a local rather than 
global maximum. To work around this it is recommended that the whole procedure be 
repeated many times with different initial guesses for the unknown parameters, and use the 
one that converges to the best result. 

5 Appendix 1 

In the discussion of CpG islands above, there was a need to calculate the frequencies of 
states given the transition probabilities. We can do that as follows. Suppose the probability 
of transitioning from state k to state l is given by akl and the probability of being in state 
k is pk. We get to be in a particular state, k, at some position in the sequence by being at 
some state, l, at the previous position in the sequence and then transitioning to state k. In 
terms of probabilities, that means that pk = l alkpl. In other words, p is an eigenvector with 
eigenvalue 1 of the transpose of the transition matrix. Calculating this eigenvector for the ’+’ 
matrix of transitions for CpG islands (slides page 4), yields an eigenvector of approximately 
(1, 2.35, 2.35, 1) times an arbitrary constant. Adjusting to make the probabilities add up to 
1 gives p = (.15, .35, .35, .15) 

6 Appendix 2 

We now use Lagrange multipliers to verify that during supervised learning the transition 
and emission probabilities a and e obtained by counting maximize the probability P (X, π) 
of generating the sequence X and labels π. 

We are looking for 

argmaxa,eP (X, π) = argmaxa,e eπi (xi) aπi−1πi = argmax log(eπi (xi)) + log(aπi−1πi )· a,e 
i i 

Since the first term in the sum only depends on e, and the second only depends on a, we 
are looking for: � 

argmaxe log(eπi (xi)) 
i 
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and � 
argmax log(aπi−1πi )a 

i 

We will verify our intuitive answer only for the second sum but the same method works for 
the first one as well. 

Let 
Ckl = # of times πi−1 = k and πi = l 

Then we can rewrite our expression for a as: 

argmaxa Ckllog(akl) 
k,l 

Fix a particular value of k. Since state k transitions to exactly one other state, we know 
that l akl = 1. We want to find the values of ak1, ak2, ..., akK that maximize l Ckllog(akl) 
given this constraint. From the method of Lagrange multipliers, we know this maximum 
occurs at a local extremum of l Ckllog(akl) − λ l akl for some value of λ. Taking · 
derivatives with respect to akl for each l and setting them all to 0, we get: 

Ckl 
= λ 

akl 

Ckl 
akl = 

λ � Ckl 
� 

= 1, so λ = Ckl 
λ 

l l 

Ckl 
akl = � = a(k, l) 

l Ckl 

as was to be demonstrated. 
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