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What have we learned so far?

• String searching and counting
– Brute-force algorithm
– W-mer indexing

• Sequence alignment
– Dynamic programming, duality path alignment
– Global / local alignment, general gap penalties

• String comparison
– Exact string match, semi-numerical matching

• Rapid database search
– Exact matching:  Hashing, BLAST
– Inexact matching:  neighborhood search, projections

• Problem set 1



So, you find a new piece of DNA…

• Align it to things we know about
• Align it to things we don’t know about
• Stare at it

– Non-standard nucleotide composition?
– Interesting k-mer frequencies?
– Recurring patterns?

• Model it
– Make some hypotheses about it
– Build a ‘generative model’ to describe it
– Find sequences of similar type

What do you do?

…GTACTCACCGGGTTACAGGATTATGGGTTACAGGTAACCGTT…



This week: Modeling biological sequences
(a.k.a. What to do with a huge chunk of DNA)

• Ability to emit DNA sequences of a certain type
– Not exact alignment to previously known gene
– Preserving ‘properties’ of type, not identical sequence

• Ability to recognize DNA sequences of a certain type (state)
– What (hidden) state is most likely to have generated observations
– Find set of states and transitions that generated a long sequence

• Ability to learn distinguishing characteristics of each state
– Training our generative models on large datasets
– Learn to classify unlabelled data

Intergenic CpG
island

Promoter First
exon

Intron Other
exon

Intron

TTACAGGATTATGGGTTACAGGTAACCGTTGTACTCACCGGGTTACAGGATTATGGGTTACAGGTAACCGGTACTCACCGGGTTACAGGATTATGGTAACGGTACTCACCGGGTTACAGGATTGTTACA
GG



Why Probabilistic Sequence Modeling?
• Biological data is noisy

• Probability provides a calculus for manipulating models

• Not limited to yes/no answers – can provide “degrees of 
belief”

• Many common computational tools based on probabilistic 
models

• Our tools: 

– Markov Chains and Hidden Markov Models (HMMs)



Definition: Markov Chain

Definition: A Markov chain is a triplet (Q, p, A), where:

Q is a finite set of states. Each state corresponds to a symbol in the 
alphabet Σ

p is the initial state probabilities.

A is the state transition probabilities, denoted by ast for each s, t in Q.

For each s, t in Q the transition probability is:   ast ≡ P(xi = t|xi-1 = s)

Property: The probability of each symbol xi depends only on 
the value of the preceding symbol xi-1 :  P (xi | xi-1,…, x1) = P (xi | xi-1)

Formula: The probability of the sequence:

P(x) = P(xL,xL-1,…, x1) = P (xL | xL-1) P (xL-1 | xL-2)… P (x2 | x1) P(x1) 

Output: The output of the model is the set of states at each 
instant time => the set of states are observable



Definitions: HMM (Hidden Markov Model)

Definition: An HMM is a 5-tuple (Q, V, p, A, E), where:
Q is a finite set of states, |Q|=N

V is a finite set of observation symbols per state, |V|=M

p is the initial state probabilities.

A is the state transition probabilities, denoted by ast for each s, t in Q.

For each s, t in Q the transition probability is:   ast ≡ P(xi = t|xi-1 = s)

E is a probability emission matrix, esk ≡ P (vk at time t | qt = s)

Property: Emissions and transitions are dependent on the current state 
only and not on the past.

Output: Only emitted symbols are observable by the system but not the 
underlying random walk between states -> “hidden”



1.  Scoring x, one path

P(x,π)

Prob of a path, emissions

2.  Scoring x, all paths

P(x) = Σπ P(x,π)

Prob of emissions, over all paths

3. Viterbi decoding

π* = argmaxπ P(x,π)

Most likely path

4.  Posterior decoding

π^ = {πi | πi=argmaxk ΣπP(πi=k|x)}

Path containing the most likely
state at any time point.
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Λ* = argmaxΛ P(x,π|Λ)
6. Unsupervised learning. 

Λ* = argmaxΛ maxπP(x,π|Λ)
Viterbi training, best path

6.  Unsupervised learning

Λ* = argmaxΛ ΣπP(x,π|Λ)

Baum-Welch training, over all paths

The six algorithmic settings for HMMs



Example 1: Finding GC-rich regions

Background
(B)

Promoter
Region (P)

0.15

0.25
0.750.85

A: 0.25
T: 0.25
G: 0.25
C: 0.25

TAAGAATTGTGTCACACACATAAAAACCCTAAGTTAGAGGATTGAGATTGGCA
GACGATTGTTCGTGATAATAAACAAGGGGGGCATAGATCAGGCTCATATTGGC

A: 0.15
T: 0.13
G: 0.30
C: 0.42

• Promoter regions frequently have higher counts of Gs and Cs
• Model genome as nucleotides drawn independently from two 

distributions:  Background (B) and Promoters (P). 
• Emission probabilities based on nucleotide composition in each.
• Transition probabilities based on relative abundance & avg. length

P(Xi|P)P(Xi|B)
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HMM as a Generative Model
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A: 0.42
T: 0.30
G: 0.13
C: 0.15

A: 0.25
T: 0.25
G: 0.25
C: 0.25

P(S|P)P(S|B)P(Li+1|Li)
Bi+1 Pi+1

Bi 0.85 0.15

Pi 0.25 0.75



Sequence Classification
PROBLEM: Given a sequence, is it a promoter region?  

– We can calculate P(S|MP), but what is a sufficient P value?
SOLUTION: compare to a null model and calculate log-likelihood ratio

– e.g. background DNA distribution model, B

Pathogenicity
Islands

Background 
DNA
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C: 

Score 
MatrixA: 0.15

T: 0.13
G: 0.30
C: 0.42



Finding GC-rich regions

• Could use the log-likelihood ratio on 
windows of fixed size

• Downside: have to evaluate all islands 
of all lengths repeatedly

• Need:  a way to easily find transitions

TAAGAATTGTGTCACACACATAAAAACCCTAAGTTAGAGGATTGAGATTGGCA
GACGATTGTTCGTGATAATAAACAAGGGGGGCATAGATCAGGCTCATATTGGC



P

B

P

B

P

B B

P

B B

P

B

P

B

G C A A A T G C

L:

S:

PP

0.15 0.130.15

0.75 0.75 0.75 0.75 0.75

0.30

0.75

0.42 0.15 0.30 0.30

0.75

Probability of a sequence if all promoter

A: 0.15
T: 0.13
G: 0.30
C: 0.42

P(x,π)=aP*eP(G)*aPP*eP(G)*aPP*eP(C)*aPP*eP(A)*aPP*…

=ap*(0.75)7*(0.15)3*(0.13)1*(0.30)2*(0.42)2

=9.3*10-7

Why is this so small?
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Should we try all possibilities?  What is the most likely path?

Probability of the same sequence if mixed



1.  Scoring x, one path

P(x,π)

Prob of a path, emissions

2.  Scoring x, all paths

P(x) = Σπ P(x,π)

Prob of emissions, over all paths

3. Viterbi decoding

π* = argmaxπ P(x,π)

Most likely path

4.  Posterior decoding

π^ = {πi | πi=argmaxk ΣπP(πi=k|x)}

Path containing the most likely
state at any time point.
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Λ* = argmaxΛ P(x,π|Λ)
6. Unsupervised learning. 

Λ* = argmaxΛ maxπP(x,π|Λ)
Viterbi training, best path

6.  Unsupervised learning

Λ* = argmaxΛ ΣπP(x,π|Λ)

Baum-Welch training, over all paths

The six algorithmic settings for HMMs



3. DECODING: 
What was the sequence of hidden states?

Given:  Model parameters ei(.), aij

Given:  Sequence of emissions x

Find: Sequence of hidden states π



Finding the optimal path

• We can now evaluate any path through hidden states, given 
the emitted sequences

• How do we find the best path?

• Optimal substructure!  Best path through a given state is: 
– Best path to previous state
– Best transition from previous state to this state
– Best path to the end state

Viterbi algortithm
– Define Vk(i) = Probability of the most likely path through state πi=k
– Compute Vk(i+1) as a function of maxk’ { Vk’(i) }

– Vk(i+1) = ek(xi+1) * maxj ajk Vj(i)

Dynamic Programming



Finding the most likely path
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• Find path π* that maximizes total joint probability P[ x, π ]

• P(x,π) = a0π1
* Πi eπi

(xi) × aπiπi+1

start emission transition



Calculate maximum P(x,π) recursively

• Assume we know Vj for the previous time step (i-1)

• Calculate Vk(i) =     ek(xi)   *   maxj (   Vj(i-1)   × ajk )

xi

ek

k
j

ajk…
…

xi-1

…
Vj(i-1)

Vk(i)hidden
states

observations

this emission Transition
from state j

max ending
in state j at step i

all possible previous states j

current max



The Viterbi Algorithm

x1 x2 x3 ………………………………………..xN

Input: x = x1……xN

Initialization:
V0(0)=1, Vk(0) = 0, for all k > 0

Iteration:
Vk(i) = eK(xi) × maxj ajk Vj(i-1)

Termination:
P(x, π*) = maxk Vk(N)

Traceback:
Follow max pointers back
Similar to aligning states to seq

In practice:
Use log scores for computation

Running time and space: 
Time:    O(K2N)
Space:  O(KN)

State 1
2

K

Vk(i)



1.  Scoring x, one path

P(x,π)

Prob of a path, emissions

2.  Scoring x, all paths

P(x) = Σπ P(x,π)

Prob of emissions, over all paths

3. Viterbi decoding

π* = argmaxπ P(x,π)

Most likely path

4.  Posterior decoding

π^ = {πi | πi=argmaxk ΣπP(πi=k|x)}

Path containing the most likely
state at any time point.

One path All paths
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Λ* = argmaxΛ P(x,π|Λ)
6. Unsupervised learning. 

Λ* = argmaxΛ maxπP(x,π|Λ)
Viterbi training, best path

6.  Unsupervised learning

Λ* = argmaxΛ ΣπP(x,π|Λ)

Baum-Welch training, over all paths

The six algorithmic settings for HMMs



2. EVALUATION
(how well does our model capture the world)

Given:  Model parameters ei(.), aij

Given:  Sequence of emissions x

Find: P(x|M), summed over all possible paths π



Simple: Given the model, generate some sequence x

Given a HMM, we can generate a sequence of length n as follows:
1. Start at state π1 according to prob a0π1
2. Emit letter x1 according to prob eπ1(x1)
3. Go to state π2 according to prob aπ1π2
4. … until emitting xn

We have some sequence x that can be emitted by p.  Can calculate its likelihood. 
However, in general, many different paths may emit this same sequence x.
How do we find the total probability of generating a given x, over any path?
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Complex: Given x, was it generated by the model?

Given a sequence x,
What is the probability that x was generated by the model 

(using any path)?

– P(x) = Σπ P(x,π)

• Challenge: exponential number of paths
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Calculate probability of emission over all paths
• Each path has associated probability

– Some paths are likely, others unlikely: sum them all up
Return total probability that emissions are observed, 
summed over all paths

– Viterbi path is the most likely one
• How much ‘probability mass’ does it contain?

• (cheap) alternative:  
– Calculate probability over maximum (Viterbi) path π*
– Good approximation if Viterbi has highest density
– BUT:  incorrect

• (real) solution
– Calculate the exact sum iteratively

• P(x) = Σπ P(x,π)

– Can use dynamic programming



The Forward Algorithm – derivation
Define the forward probability:

fl(i) = P(x1…xi, πi = l) 

=     Σπ1…πi-1 P(x1…xi-1, π1,…,  πi-2, πi-1,   πi = l) el(xi)

= Σk Σπ1…πi-2 P(x1…xi-1, π1,…, πi-2, πi-1=k)    akl el(xi)

= Σk fk(i-1) akl el(xi) 

= el(xi) Σk fk(i-1) akl



Calculate total probability Σπ P(x,π) recursively

• Assume we know fj for the previous time step (i-1)

• Calculate  fk(i) =     ek(xi)   *   sumj (   fj(i-1)    × ajk )

xi

ek

k
j

ajk…
…

xi-1

…
fj(i-1)

fk(i)hidden
states

observations

this emission transition
from state j

sum ending
in state j at step i

every possible previous state j

updated sum



The Forward Algorithm

x1 x2 x3 ………………………………………..xN

Input: x = x1……xN

Initialization:
f0(0)=1, fk(0) = 0, for all k > 0

Iteration:
fk(i) = eK(xi) × sumj ajk fj(i-1)

Termination:
P(x, π*) = sumk fk(N)

In practice:
Sum of log scores is difficult

approximate exp(1+p+q)
scaling of probabilities

Running time and space: 
Time:    O(K2N)
Space:  O(KN)

State 1
2

K

fk(i)



1.  Scoring x, one path

P(x,π)

Prob of a path, emissions

2.  Scoring x, all paths

P(x) = Σπ P(x,π)

Prob of emissions, over all paths

3. Viterbi decoding

π* = argmaxπ P(x,π)

Most likely path

4.  Posterior decoding

π^ = {πi | πi=argmaxk ΣπP(πi=k|x)}

Path containing the most likely
state at any time point.
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Λ* = argmaxΛ P(x,π|Λ)
6. Unsupervised learning. 

Λ* = argmaxΛ maxπP(x,π|Λ)
Viterbi training, best path

6.  Unsupervised learning

Λ* = argmaxΛ ΣπP(x,π|Λ)

Baum-Welch training, over all paths

The six algorithmic settings for HMMs



Introducing memory

• State, emissions, only depend on current state
• How do you count di-nucleotide frequencies?

– CpG islands
– Codon triplets
– Di-codon frequencies

• Introducing memory to the system
– Expanding the number of states



Example 2: CpG islands: incorporating memory

• Markov Chain
– Q: states
– p: initial state probabilities
– A: transition probabilities

• HMM
– Q: states
– V: observations
– p: initial state probabilities
– A: transition probabilities
– E: emission probabilities

A+ T+

G+C+

aGTaAC

aGC

aAT
A+ T+G+C+

A: 0 
C: 0 
G: 1 
T: 0

A: 1 
C: 0 
G: 0 
T: 0

A: 0 
C: 1 
G: 0 
T: 0

A: 0 
C: 0 
G: 0 
T: 1



Counting nucleotide transitions: Markov/HMM

• Markov Chain
– Q: states
– p: initial state probabilities
– A: transition probabilities

• HMM
– Q: states
– V: observations
– p: initial state probabilities
– A: transition probabilities
– E: emission probabilities

A+ T+

G+C+

aGTaAC

aGC

aAT

A
+

T
+

G
+

C
+

A
: 0

 
C

: 0
 

G
: 1

 
T:

 0

A
: 1

 
C

: 0
 

G
: 0

 
T:

 0

A
: 0

 
C

: 1
 

G
: 0

 
T:

 0

A
: 0

 
C

: 0
 

G
: 0

 
T:

 1A
+

T
+

G
+

C
+

A
: 0 

C
: 0 

G
: 1 

T: 0

A
: 1 

C
: 0 

G
: 0 

T: 0

A
: 0 

C
: 1 

G
: 0 

T: 0

A
: 0 

C
: 0 

G
: 0 

T: 1



What have we learned ?
• Modeling sequential data

– Recognize a type of sequence, genomic, oral, verbal, visual, etc…
• Definitions

– Markov Chains
– Hidden Markov Models (HMMs)

• Simple examples
– Recognizing GC-rich regions. 
– Recognizing CpG dinucleotides

• Our first computations
– Running the model:  know model generate sequence of a ‘type’
– Evaluation:  know model, emissions, states p?
– Viterbi: know model, emissions find optimal path
– Forward: know model, emissions total p over all paths

• Next time:
– Posterior decoding
– Supervised learning
– Unsupervised learning:  Baum-Welch, Viterbi training
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