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1 Introduction 

To this point, the class has dealt mainly with known, characterized gene sequences. We have 
learned several methods of comparing genes in hopes of quantifying divergence, highlight­
ing similar gene segments which have been preserved among species, and finding optimal 
alignments of sequences such that we are better able to understand the ”evolution” of the 
sequence. We have used BLAST, hashing, projections and neighborhood search to find se­
quences in a database. Having learned these methods, we now can begin to address the 
question: 

1.1 What do we do with a new found piece of DNA? 

The first approach is usually to compare the DNA to known sequences, for which the meth­
ods mentioned work well. But many times the new sequence cannot be matched to genes 
within a database. Then, one could compare several unknown sequences and try to group 
them for later use. All these technics build on comparisons of DNA sequences and on the 
perseverance of homologous parts. But why not take an orthogonal approach and try to 
just understand the given piece itself better. This could involve analyzing the sequence for 
unusual properties like k-mer frequencies and motifs or recurring patterns. Here we want to 
explore the more constructive approach of modeling properties in a generative model. 
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1.2 Modeling!


Modeling involves making the hypotheses about the sequence, that it is a concatenation 
of distinct functional subsequences. These subsequences have similar properties and can 
be classified as a small number of different types. For example there are several biological 
sequence types, such as promoters, first exons, and intergenic sequences. One distinctive 
feature of these types are different frequencies of the four bases. In this lecture we focus 
on this property and assume that the likelihood of a base occurring in a sequence is only 
dependent on the type of its subsequence (and not e.g. on predescending or following bases). 

Before giving a more formal definition of this model lets see what we can use it for: 

•	 We can generate ”typical” DNA sequences (of a certain type) 

•	 By comparing how likely it is that a given sequence is generated by one or another 
type we can interfere types of unknown sequences. 

•	 Allowing transitions between certain types with given probabilities allows us in addition 
to interfering the types of subsequences to interfere the splitting into type-sequences 
of a whole sequence 

•	 Using (annotated) examples we can train our model to most likely generate the existing 
sequences and thus learn characteristics of types 

1.3 Why using a probabilistic model? 

There are many good reasons for choosing our generative model to be probabilistic. First 
since the nature of biological data is noisy we can not (even with a perfect model) expect 
to have a deterministic model explaining this data. Secondly using probability in our model 
allows us to utilize the powerful mathematical tools and calculi of probability theory. It also 
opens the possibility to classify decisions and interferences in a much more expressive way 
by using probabilities to give ”degrees of belief” instead of hard classifications. 
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2 The one state model 

To get some feeling for the concept of modeling and for the purpose of learning (some of) the 
probabilistic methods and tricks needed we start with the simplest model possible namely 
the one state model. For this model we assume that a sequence is generated over time, while 
at each point of time every base has a certain globally fixed probability to occur (which is 
therefore independent from time, history, ...). 

A simple example would be to a apply this model to GC-rich regions by assuming that in 
such a sequence nucleotide are independent and occur with frequencies P (A) = 0.15,P (T ) = 
0.13,P (G) = 0.30 and P (C) = 0.42. If we have now a GC-rich region sequence S = 
AAATGCGCATTTCGAA, then we can infer P (S|MP ), the probability of getting this 
exact sequence S given our model MP by first using independence: 

|S|

P (S|MP ) = P (Si|MP ) 
i=1 

This product can always be rearranged with respect to the nucleotides gives a probability 
only dependent on the nucleotide count. In our example this is: 

P (S|MP ) = P (A)6 ∗P (T )4 ∗P (G)3 ∗P (C)2 = (0.15)6 ∗(0.13)4 ∗(0.30)3 ∗(0.42)2 = 1.55E −11 

Remark: 
Note that this is the probability of getting one sequence with 6As, 4Ts, 3Gs, and 2Cs. This 
probability needs to be multiplied by the number of permutations of this sequence in order 
to find the probability of getting any sequence with the given nucleotide counts. When 
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using the model, we assume that for any position in the generated sequence the nucleotide 
probabilities hold. We do not account for any dependencies among nucleotides which may 
come into play. 

Knowing P (S|MP ) alone is not a great information especially since there is hardly a good 
intuition as to whether or not the computed small probabilities are relatively high or not. 
Thus we create an alternative background model with uniform probabilities P (A) = P (T ) = 
P (G) = P (C) = 0.25 and get that the probability that the background generated our 
sequence S is with P (S|B) = 9.31E − 10 actually nearly ten times higher. Since 

P (S|B)/P (S|MP ) > 1 

we have gained some confidence that S is more likely not a GC-rich region but a background 
sequence. 

Instead of using this rule we can take (the monotone) logarithm on both sides. 

Score = log(P (S|B)/P (S|MP )) = log(P (S|B)) − log(P (S|MP )) > 0 

Using again independence leads to the so called log-likelihood ratios: 

Score = log(P (Si|MP )/P (Si|B)) 
i 

Computing the total score is therefore just adding up of the log-likelihood ratios for each 
nucleotide in the sequence. In our example these ratios are A : −0.73, T : −0.94, G : 0.26, 
C : 0.74. 

2.1 Use and drawback of the one state model 

As we have seen we can use the one state model to decide whether a sequence is more likely 
a background or a GC-rich region. However, we need some extension to use this approach 
for finding the GC-rich parts in a whole sequence. One idea would be to take windows (e.g. 
of fixed size) in the sequence and decide for these windows whether they are likely to be 
GC-rich. Besides computational problems this does not give a satisfactory model/technic 
since in reality regions of one type are not of a specific length. Therefore in the next section 
we extend our model such that it can itself ”decide” in which type of subsequence it is and 
freely transition between the types. 

3 Markov Chains and Hidden Markov Models 

A Markov chain M = (Q, A, p) consists of a (typically finite) set of states Q, transition 
state probabilities A - where A = (ai,j ) is a stochastic matrix with probabilities ai,j that M 
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changes from being in state qi to state qj in one step - and the distribution p over Q giving 
the probabilities to start in a certain state. 

A Markov chain starts in one state (according to p) and transitions each time step to the 
same or an other state (according to A). The state trajectory of such a random walk is the 
generated sequence. 

A useful generalization of this model is the hidden Markov model which instead of directly 
outputting the state sequence, couples every state with a probability distribution over an 
output alphabet Σ. In addition to transitioning every time an output is drawn from the dis­
tribution of the current state. Since it is possible that one character has non-zero probability 
to be generated in two (or more) different states, one can not identify the state trajectory 
form the output. The states are hidden for the observer. 

Note the important property (and assumption) that the next state in each of both model 
only depends on the current state. Thus the model is memoryless. 

3.1 Example: GC-rich regions 

Having HMM we can easily make a model for a whole sequence containing both background 
and promoter regions: 

5




Remark:

The above diagram shows a HHM with a 85% chance that when in the background state,

the next item in the sequence will also be part of the background DNA. Similary there is

a 15% chance that there will be a state transition from background to promoter . . .. Note

that the probabilities of all transition choices from a given state form a distribution (their

sum is 100%.


3.2 Using MC and HMM as a Generative Model 

These models can be easily used as a generative model. Instead of getting a sequence by 
drawing nucleotides form one distribution as in the simple model, we now first initialize the 
model using the start probabilities of p, remember the current state where we are in, draw a 
nucleotide from the corresponding distribution and perform a state transition according to 
the probabilities in A. In such a way a sequence corresponds to a path in the state space. 
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4 (Algorithmic) questions related to HMMs 

Having the correspondence between paths in a HMM and a sequence present several prob­
lems of interest. The simplest one is to compute the probability of a given path or parse 
sequence. Having made this connection between sequences, paths and probabilities we can 
score paths according to their probability and might want to find the single highest score 
path that could have generated a given sequence. This is done by the Viterbi Algorithm. We 
will also be interested in computing the total probability of a given sequence being generated 
by a particular HMM over all possible state paths that could have generated it; the method 
we present is yet another application of dynamic programming, known as the forward algo­
rithm. One motivation for computing this probability is the desire to measure the accuracy 
of a model. Being able to compute the total probability of a sequence allows us to compare 
alternate models by asking the question: “Given a portion of a genome, how likely is it that 
each HMM produced this sequence?” Finally, even though we now know the Viterbi decod­
ing algorithm for finding the single optimal path, we want to find the most likely state at any 
position of a sequence (given the knowledge that our HMM produced the entire sequence). 
This question is named posterior decoding. The posterior decoding - which is not given here 
- applies both the forward algorithm and the closely related backward algorithm. 

Notice that all questions given here want information related to all possible paths. This is

critical since there is an exponential number of such possible sequences/paths. Indeed, in an
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HMM with k states, at each position we can be in any of k states; hence, for a sequence of 
length n, there are kn possible parses. This looks familiar to the problem we faced for com­
puting optimal alignments. The similarities go further: As discussed in Lecture, matching 
states of an HMM to a nucleotide sequence is somewhat similar to the problem of alignment 
in that we wish to map each character to the hidden state that generated it. The only 
difference is that we can reuse states, i.e., return to the same state. It is therefor no surprise 
that the very general dynamic programming technic we used for computing alignments also 
helps here. 

4.1 Likelihood of a path 

But before we jump into these complexities we have a look at the evaluation of just one 
path. Analog to the simple example we can compute the probability of one such genera­
tion by multiplying the probabilities that the model makes exactly the choices we assumed. 
Again the exploitation of the independence allows an easy calculation: 

As an example are here two paths and their probabilities: 

Path 1: 
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Path 2:


4.2 Viterbi Algorithm and Decoding 

As promised we want now find the optimal (most likely) path creating a sequence. The

reason why we can use dynamic programming for this lies in the following fact quite typical

for questions on paths: Every sub path of an optimal path is optimal and vice versa every

optimal path can be constructed by constantly putting together smaller optimal sub path

(or prolonging a smaller path).


This leads to an the following recurrence:

(We assume to have a single start state 0 which transits according to p to the next state)


Vk(l) = Probability of the most likely path of length l from state 0 to state k 

Vk(l + 1) = ek(xl+1) ∗ maxj aj,kVj (l) 

which can be solved easily: 
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Using the log of the probabilities simplifies the algorithm slightly, since all products get 
transformed into sums. 

4.3 Forward Algorithm and Evaluation 

We begin by discussing the forward algorithm which, given a sequence X = x1, . . . , xn and 
an HMM which produced it, finds the total probability P (X) of X over all possible Markov 
paths π = π1, . . . , πn that could have produced it. We are interested in total probability 
for multiple reasons. One is that the Viterbi optimal path may have an extremely small 
probability of actually occurring; moreover, suboptimal paths may have probabilities very 
close to the optimum. For example, in the HMM discussed last time, suppose the Viterbi 
path includes a promoter region, i.e., a sequence of consecutive promoter states. Then an 
alternate path that merely switches from the promoter state to the background state for one 
base and then switches back is only slightly less probable than the optimal. 

In general, suboptimal paths account for a much greater proportion of the probability distri­
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bution than the Viterbi path alone, and so working with our system over all possible paths 
may allow us to make better inferences about the true structure of the sequence. Also, the 
optimal path may be very sensitive to the choice of parameters of our model, and since we do 
not actually know these exactly—and worse, rounding errors may affect the answer—being 
able to look at more paths is likely to be informative. 

Finally, as discussed in the introduction, being able to compute total probability allows us 
to compare two HMMs. One cheap alternative to actually computing this probability is to 
simply calculate the probability of the Viterbi path predicted in each case, but we can do 
better: in fact, the forward algorithm for computing the real answer is no more expensive 
than Viterbi! 

Just as Viterbi found the most likely path in polynomial time, we can find the total proba­
bility of a sequence in polynomial time—despite the challenge of an exponential number of 
possible parses—via the principle of dynamic programming. More precisely, we will calculate 
total probabilities iteratively by reusing solutions to subproblems. In this case we are not 
looking for the optimal solution but rather for a sum of previously computed probabilities, 
but the rough idea is the same as in Viterbi. Indeed, we still “expand out the problem one 
layer at a time,” the only difference being that this time we take a sum over previous states 
and transitions rather than a max: 

fk(l) = Probability that the sequence up to position l was generated ending in state k 

fk(l + 1) = ek(xl+1) ∗ j aj,kfj (l) 

In words, we have found a recursion that allows us to compute the total probability of 
generating the sequence up to a position i and being in state l at that position, using the 
(previously computed) total probabilities of reaching position i−1 and being in each possible 
state. Thus, we may compute each of these probabilities by filling in a dynamic programming 
table with columns indexed by position i and rows indexed by state l. When the algorithm 
completes, summing the values in the rightmost column (which takes into account all possi­
ble final states) gives the total probability of generating the entire sequence. 
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The time complexity of the algorithm is O(K2N) because filling in each of the KN cells in 
the table requires using data from all K cells in the previous column; this is the same as 
for Viterbi. The space required is O(KN) if we wish to remember the entire table of proba­
bilities but only O(K) if not, since we need only retain values from one previous column to 
compute the next. 

There is one caveat to the forward algorithm which we now note. In the case of Viterbi, we 
were able to use log probabilities because we only multiplied probabilities of independent 
events. However, in the forward algorithm, we add probabilities; thus, it appears that we 
can no longer work with logs. Due to the small probability of generating any given sequence 
or part of a sequence, numerical accuracy thus becomes a concern. 

Nevertheless, it turns out that we can overcome this challenge in practice by approximating 
when necessary via an algebra trick. We wish to find a function F giving us F (log m, log n) = 
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log(m + n). Write 

m + n 
log(m + n) = log m + log 

m 
n 

= log m + log 1 + 
m 

= log m + log(1 + exp(log n − log m)). 

We now consider three cases: 

• m ≈ n: All quantities in the final expression are well-behaved. 

• m � n: We can ignore the second term and approximate log(m + n) to log m. 

• m � n: Swap m and n and apply the previous case. 

These observations allow us to keep using log probabilities, and so in fact the problem is 
solved. 

5 Encoding memory in an HMM 

Finally we want to describe how to incorporate “memory” into a Markov model by increasing 
the number of states. First we present a motivating biological example. 

Recall that we built an HMM with two states: a “high-CG” promoter state with elevated 
probabilities of emitting Cs and Gs, and a background state with uniform probabilities of 
emitting all nucleotides. Thus, our previous model, which we will call HMM1, characterized 
promoters simply by abundance of Cs and Gs. However, in reality the situation is more 
complicated. As we shall see, a more accurate model would instead monitor the abundance 
of CpG pairs, i.e., C and G nucleotides on the same strand (separated by a phosphate on 
the DNA backbone, hence the name “CpG”). Note that we call these CpGs simply to avoid 
confusion with bonded complementary C–G bases (on opposing strands). 

Some biological background will shed light on the reason for introducing the new model. 
In the genome, not only the sequence of bases, but also their methylation states determine 
the biological processes that act on DNA. That is, a methyl group can be added to a nu­
cleotide, thus marking it for future reference. Proteins that later bind to the DNA (e.g., for 
transcription or replication purposes) “notice” such modifications that have been made to 
particular bases. To elaborate on one interesting example, methylation allows error-checking 
in the DNA replication process. Recall that replication is performed by “unzipping” the 
DNA polymer and then rebinding complementary bases to each strand, resulting in a pair 
of new double-stranded DNA helices. If, during this process, a discrepancy is found between 
an old strand of DNA and a new strand (i.e., a pair of bases is not complementary), then 
the old—correct—base is identified by its being methylated. Thus, the new, unmethylated 
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base can be removed and replaced with a base actually complementary to the original one. 

Now, a side effect of methylation is that in a CpG pair, a methylated C has a high chance 
of mutating to a T. Hence, dinucleotide CpGs are rare throughout the genome. However, in 
active promoter regions, methylation is suppressed, resulting in a greater abundance of CpG 
dinucleotides. Such regions are called CpG islands. These few hundred to few thousand 
base-long islands thus allow us to identify promoters with greater accuracy than classifying 
by abundance of Cs and Gs alone. 

All of this raises the question of how to encode dinucleotides in a Markov model, which by 
definition is “memoryless”: the next state depends only on the current state via predefined 
transition probabilities. Fortunately, we can overcome this barrier simply by increasing the 
number of states in our Markov model (thus increasing the information stored in a single 
state). That is, we encode in a state all the information we need to remember in order to 
know how to move to the next state. In general, if we have an “almost HMM” that deter­
mines transition probabilities based not only on the single previous state but also on a finite 
history (possibly of both states and emissions), we can convert this to a true memoryless 
HMM by increasing the number of states. 

In our particular example, we create a Markov chain such that dinucleotide CpGs have high 
frequency in promoter states and low frequency in the background. To do this, we use eight 
states rather than just two, with each state encoding both the promoter/background state as 
well as the current emission. This gives an 8 state HMM. Note, however, that each emission 
probability in this HMM from a given state is now either 0 or 1, since the state already 
contains the information of which nucleotide to emit. Thus the HMM is actually a simple 
Markov chain as pictured here: 
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