MIT OpenCourseWare
|ttp://ocw.mit.edu

6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution
Fall 2008

For information about citing these materials or our Terms of Use, visit: |http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.047/6.878 - Computational Biology: Genomes, Networks, Evolution

Rapid sequence alignment
and Database search

Local alignment, varying gap penalties
Karp-Rabin: Semi-numerical methods
BLAST: dB search, neighborhood search

Statistics of alignment scores (recitation)

Lecture 3 Thursday Sept 11, 2008

Challenges in Computational Biology

@ Genome Assembly

@ Regulatory motif discovery Gene Finding

O-OA yaxes IR o I == B S B
Comparative Genomics

TCATGCTAT @ D b h
. e 1~ atabase searc
@Evolutlonary Theory Emgm

TTATGATTT
Gene expression analysis ERaiyor-rz= s m
NA transcript Lot e .

-

@ Cluster discovery Gibbs sampling

DNA

Sequence alignment

@ Protein network analysis

?O_‘__O @ Regulatory network inference
O - @ Emerging network properties

LT
"
feld)

))

LECI
\/ “v‘
1) Fb2) Fi1) fbl)
S N, o

Bi0) AB(1)
R0

f(3)

G 4/

(1

o) L)
y D)

oy

begin

end

[alclGITICcIAlTICIA]

|A|$|G|T|G|$|T|C|A|
[AI%[GIT[GI*[TICA]
*

mutation

deletion

insertion

Alcle[T[clAlT]

clal

o>
> |
(9]

7] T
G| cicl o

T |T

1C | c

A Al
AgTGCCC AA GGTG! AAACTTCTGGA

Tues: Sequence alignment + dynamic programming

Dynamic programming

— Problems that can be decomposed into subparts
— Identical sub-problems: reuse computation

— Bottom-up approach: systematically fill table

The sequence alignment problem
— Genomes change: mutation, insertions, deletions
— Alignment: infer evolutionary events
— Scoring metric reflects evolutionary properties

Dynamic programming and sequence alignment
— Alignment scores are additive: decomposable

— Represent sub-problem scores in M(i,j) matrix

— Duality between alignment and path through matrix

Needleman-Wunsch algorithm

— Local update rule: F(i,}) = max{up, left, diagonal}

— Save choice pointers for traceback

— Bottom-right corner gives optimal alignment score
— Trace-back of pointers gives optimal path/alignment

Today’s Goal: Diving deeper into alignments

1. Global alignment vs. Local alignment
— Needleman-Wunsch and Smith-Waterman
— Varying gap penalties and algorithmic speedups

2. Linear-time exact string matching

— Karp-Rabin algorithm and semi-numerical methods
— Hash functions and randomized algorithms

3. The BLAST algorithm and inexact matching

— Hashing with neighborhood search
— Two-hit blast and hashing with combs

4. Probabilistic foundations of sequence alignment

— Mismatch penalties, BLOSUM and PAM matrices
— Statistical significance of an alignment score

Today’s Goal: Diving deeper into alignments

1. Global alignment vs. Local alignment
— Needleman-Wunsch and Smith-Waterman
— Varying gap penalties and algorithmic speedups

2. Linear-time exact string matching

— Karp-Rabin algorithm and semi-numerical methods
— Hash functions and randomized algorithms

3. The BLAST algorithm and inexact matching

— Hashing with neighborhood search
— Two-hit blast and hashing with combs

4. Probabilistic foundations of sequence alignment

— Mismatch penalties, BLOSUM and PAM matrices
— Statistical significance of an alignment score

Intro to Local Alignments

e Statement of the problem
— A local alignment of strings s and t

IS an alignment of a substring of s

with a substring of t
e Why local alignments?
— Small domains of a gene may be only conserved portions
— Looking for a small gene in a large chromosome (search)
— Large segments often undergo rearrangements

A B C D

AGTGCCCTGGAACCCTGACGGTGGGTCACAAAACTTCTGGA AGTGCCCTGGAACCCTGACGGTGGGTCACAAAACTTCTGGA

O » O W

OLOVVVVYIOVIL999.L320V9.LIIIVIVYIIDLIIVI LIV
TTT

OLOVVVYVYIVIL9991300VILIIIVIVYIIILIOVI LIV
T

Global alignment Local alignment B D

Global Alignment VS. Local alignment
3
Needleman-Wunsch algorithm Smith-Waterman algorithm
Initialization: F(0,0)=0 Initialization: FO,]))=F(@(,0)=0
lteration: lteration: ,
. i 0
Fi—-1,j)—d ' F(i, j) = max) Fi—1,j)—d
FG,j)=max { F(,j—1)-d FGi,j—1)—d
Fii—1,i-1)+s(x,y) | F(i—1,j—=1)+ s(xi, yj)
. ! \

Termination: Bottom right ' Termination: Anywhere

More variations on the theme: semi-global alignment

¢ Sequence a

Initialization

lteration:max

Termination

ignment variations

X
Global Local Semi-global
Top left Top row/left col. Top row
F(i—1,j)-d g(i_1 e F(i—1,j)-d
F,j—1)—d F 1) - ¢ Fi,j—1)—d

Fi—1,j-1)+s(x,)

Fi—1,j-1)+s(xY)

Fli—1,j-1)+s(x¥)

Bottom right

Anywhere

Right column

J10VVVVIOVYIL9991000VILIDIVOVYIOI LIJVILOV

J10VVYVVIVYIL19991000VILIDIVOVYOII LIJVILOV

Some algorithmic variations to save time/space

AGTGCCCTGGAACCCTGACGGTGGGTCACAAAACTTCTGGA

AGTGCCCTGGAACCCTGACGGTGGGTCACAAAACTTCTGGA

« Save time: Bounded-space computation
— Space: O(k*m)
— Time: O(k*m), where k = radius explored
— Heuristic

* Not guaranteed optimal answer
« Works very well in practice

— Practical interest

e Save space: Linear-space computation
— Save only one col / row / diag at a time
— Computes optimal score easily
— Recursive call modification allows traceback

— Theoretical interest
 Effective running time slower
» Optimal answer guaranteed

Sequence alignment with generalized gap penalties

« Implementing a generalized gap penalty function F(gap_length)

Initialization: same

lteration:

F(i-1, j-1) + s(x, ¥,)
«F(i.j) F(i,j) =max {maxy_i1F(K])—y(i-k)
| MaX=g_ j-1F(i,K) = v(-K)

2
_>

Termination: same

Do we have to be

Running Time: O(N2M) (cubic) so general?

Space: O(NM)

Algorithmic trade-offs of varying gap penalty functions
y(n) Linear gap penalty: w(k) = k*p

— State: Current index tells if in a gap or not
— Achievable using quadratic algorithm (even w/ linear space)

Y(n) . . - * 2
Quadratic: w(k) = p+q*k+rk*.
— State: needs to encode the length of the gap, which can be O(n)

— To encode it we need O(log n) bits of information. Not feasible

v(n) Affine gap penalty: w(k) = p + g*k, where gq<p
d e — State: add binary value for each sequence: starting a gap or not
/ — Implementation: add second matrix for already-in-gap (recitation)

0 W Length (mod 3) gap penalty for protein-coding regions
— Gaps of length divisible by 3 are penalized less: conserve frame
— This is feasible, but requires more possible states

— Possible states are: starting, mod 3=1, mod 3=2, mod 3=0

Today’s Goal: Diving deeper into alignments

1. Global alignment vs. Local alignment
— Needleman-Wunsch and Smith-Waterman
— Varying gap penalties and algorithmic speedups

2. Linear-time exact string matching

— Karp-Rabin algorithm and semi-numerical methods
— Hash functions and randomized algorithms

3. The BLAST algorithm and inexact matching

— Hashing with neighborhood search
— Two-hit blast and hashing with combs

4. Probabilistic foundations of sequence alignment

— Mismatch penalties, BLOSUM and PAM matrices
— Statistical significance of an alignment score

Linear-time string matching

* When looking for exact matches of a pattern

« Karp-Rabin algorithm: interpret it numerically
— Start with ‘broken’ version of the algorithm
— Progressively fix it to make it work

* Several other solutions exist, not covered today:
— Z-algorithm / fundamental pre-processing, Gusfield

— Boyer-Moore and Knuth-Morris-Pratt algorithms
are earliest instantiations, similar in spirit

— Suffix trees: beautiful algorithms, many different
variations and applications, limited use in CompBio

— Suffix arrays: practical variation, Gene Myers

Karp-Rabin algorithm

T=|2|3|5|9]0/2|3[1|4|1/5|2|6|7|3|9|9|2|1
» i

y, =23,590 y, = 31,415
y,=35902 \\

;59,023 < x=y, & P=T[7..11]
P=|3|1|4|1|5 /

- ~ compute X
x = 31,415 for 1 in [1..n]:
compute y;
1T X == vy;:
print “match at S[i1]”

_ (this does not actually work)
o Key idea:

— Interpret strings as numbers: fast comparison

Karp-Rabin algorithm

T=12/3(5/9|0{2[3[1/4|1/5(/2/6(7|/3|/9|9|2|1

y, =23,590 y, = 31,415
y, =:35,902
y* = 59023 compute X
3 ’ for 1 In [1..n]:
P=13/1141115 compute vy, (using vy;_1)
—) 1T X == vy;:
-
x=31,415 print “match at S[i]”
(this actually works)
o Key idea:

— Interpret strings as numbers: fast comparison
e To make it work:
— Compute next number based on previous one = O(1)

Hashing is good, but leads to collisions

=12/3(5(9/0{2/3{1/4/1|5/2|6|7/3]/9/9|2|1

Tmod p (ex: p=13)
7

910/2[3|/1(4|1(5(2|/6|73|9]9|2]1
/)

5
T
81913110111 71814|5 101111 7| 9|11

valid match spurious hit

« Consequences of (mod p) ‘hashing’
— Good: Enable fast computation (use small numbers)
— Bad: Leads to spurious hits (collisions)

=» Complete algorithm must deal with the bad

Karp Rabin key idea: Semi-numerical approach

 |dea 1: semi-numerical approach:

— Consider all m-mers:
T[1...m], T[2...m+1], ..., T[m-n+1...n]

— Map each T[s+1...s+m] into a number t,
— Map the pattern P[1...m] into a number p

— Report the m-mers that map to the same value as p

Semi-numerical approach: implementation

* First attempt:
— Assume 2={0,1}
(for {A,G,T,C} convert: A—00, G —-01, A—10, G —11)

— Think about each T[s+1...s+m] as a number in
binary representation, i.e.,

t=T[s+1]2M™1+T[s+2]2m-2+...+ T[s+m]2°

— Output all s such that t. is equal to the number p
represented by P

* Problem: how to map all m-mers in O(n) time ?
— Find a fast way of computing t.,, given t,

Computing t.,, based on t_ In constant time

left shift new low-order

3|14

1

5 old high-order bit \ digit
)] \

Y

!

31,415 |

§> 14i152

14,152 = (31,415 -3 *10,000) * 10 + 2

14,152 =? function (31,415)

L

L

Middle digits of the number are already computed
Shift them to the left €

Remove the high-order bit

Add the low-order bit

ldea 2. Computing all numbers in linear time

« How to transform
t.=T[s+1]2™1+T[s+2]2M-2+.. . +T[s+m]2°

Into

t =T[s+2]12M1+T[s+3]2M2+.. .+ T[s+m+1]2° ?

« Can compute t_,, from t_ using 3 arithmetic operations:
— Subtract T[s+1]2™"
— Multiply by 2 (i.e., shift the bits by one position)
— Add T[s+m+1]2°

« Therefore: t.,,= (t,- T[s+1]2™1)*2 + T[s+m+1]2°

* Therefore, we can compute all t,,t,,...,t._ using O(n)
arithmetic operations, and a number for Pin O(m)

Problem: Long strings = big numbers

To get O(n) time, we would need to perform each
arithmetic operation in O(1) time

However, the arguments are m-bit long !

If m large, it is unreasonable to assume that
operations on such big numbers can be done in
O(1) time

We need to reduce the number range to something
more manageable

Dealing with long numbers in constant time

shift new low-order
411152 old high-order bit \ digit
y— \
T I 14,152 = (31,415 -3 *10,000) * 10 + 2 (mod 13)
/18

= (7-3*3)*10+2 (mod 13)

=8 (mod 13)

ldea 3: Hashing

 We will instead compute
U =T[s+1]2™1+T[s+2]2M2+.. . +T[s+m]2° mod g
where q is an “appropriate” prime number

* One can still compute t', , from t :
U= (U~ T[s+1]2m1)*2+T[s+m+1]2° mod ¢

 If g is not large, we can compute all t'. (and p’) in
O(n) time

Problem: hashing leads to false positives

« Unfortunately, we can have false positives, i.e.,
T[s+1...s+m]#P but t, mod q = p mod g

e QOur approach:
— Use arandom g

— Show that the probability of a false positive is small
— randomized algorithm

Karp-Rabin algorithm: Putting it all together

T=1213(5/9|0{2[3[1/4|1/5(/2/6(7/3|/9|92|1

Vo

y, =123,590 y, = 31,415
Y, =135,902
yv = 59 023 compute X
= ! for i in [1..n]:
P=13/114|1|5 compute y; (using VYy;_1)
- IT X ==vy;:
~
x =31,415 print “match at S[i]”

. . . . this actually works
 Key idea: Semi-numerical computation (y)

— ldea 1: Interpret strings as numbers => fast comparison
(other semi-numerical methods: Fast Fourier Transform, Shift-And)
e To make it work:
— Idea 2: Compute next number based on previous one = O(1)

Today’s Goal: Diving deeper into alignments

1. Global alignment vs. Local alignment
— Needleman-Wunsch and Smith-Waterman
— Varying gap penalties and algorithmic speedups

2. Linear-time exact string matching

— Karp-Rabin algorithm and semi-numerical methods
— Hash functions and randomized algorithms

3. The BLAST algorithm and inexact matching

— Hashing with neighborhood search
— Two-hit blast and hashing with combs

4. Probabilistic foundations of sequence alignment

— Mismatch penalties, BLOSUM and PAM matrices
— Statistical significance of an alignment score

Increased sequence availability = new problems

* Global Alignment and Dyn. Prog. Applications
— Assume sequences have some common ancestry

— Finding the “right” alignment between two sequences
* Find minimum number of transformation operations

— Understanding evolutionary events: mutations, indels

« Sequence databases
— Query: new sequence. Subject: many old sequences
— Goal: which sequences are related to the one at hand
— most sequences will be completely unrelated to query

— Individual alignment needs not be perfect.
* Once initial matches are reported, can fine-tune them later

— Query must be very fast for a new sequence

Speeding up your searches

« Exploit nature of the problem

— If you're going to reject any match with idperc <= 90,
then why bother even looking at sequences which
don’t have a stretch of 10 nucleotides in a row.

— Pre-screen sequences for common long stretches
* Put the speed where you need it
— Pre-processing the database is off-line.
— Once the query arrives, must act fast
« Solution: content-based indexing and BLAST
— Example: index 10-mers.
— Only one 10-mer in 4'° will match, one in a million.
— (even with 500 k-mers, only 1 in 2000 will match).
— Additional speedups...

BLAST

Basic local alignment search tool - all 46 versions »
SF Altschul, W Gish, W Miller, EW Myers, DJ Lipman - J. Mol. Biol, 1990

Gish', Webb Miller2 Eugene W. Myers3 and David J. Lipmanl ...
Cited by 21457 - Related Articles - View as HTML - Web Search

(Gapped blast: 24000 citations!)

Blast Algorithm Overview

 Receive query

1. Split query into overlapping words of length W

2. Find neighborhood words for each word until threshold T

3. Look into the table where these neighbor words occur: seeds S
4. Extend seeds S until score drops off under X

« Report significance and alignment of each match

query word (W = 3)
L

Jusry:

1. Split query into words

PQG
PEG
PRG
PEG
NG
PDG
PHG
PG
P3G

2. Expand word
neighborhood

18
15
14
14
13
13

W-mer
Database

GSVEDPTTGSCSLAALLNKCK TP DGQRLVNQU I KQPLMDENR IEERLNLVE AFVEDAEL ROTLQEDL

3. Search database for
neighborhood matches

Query:

Shijcr:

l

- -

325 SLAM LENFCHEIPM)AIFLWNOUIEOPLMDEMNRIEERLNLVER 365
#Liesl s E+s +Us+ Ps D + ER + A

290 TLASVLDCTY FHLEFVLHMPVEDTEVNLLERQOTICA 330

High-scoring Segment Pair (HSP)

4. Extend each hit into alignment

The BLAST Search Algorithm

rd (W= 3
E[UEFFWi()

Ouery: GIVEDTTCSOSLAALLNKCEKTPQGORLVNOWIKOPLMDENRIEERLNLVEAFVEDAELROTLOEDL

neighborhood

PQG
FEG
FRG
PKG

words

Cusry: 325

Shjce: 250

FNG
FDG
FHG
MG
P3G

18
15
14
14
13
13
13
13
13

POA
PON

B —

13
12

neighborhood
score threshold
(T=13)

X

=

SLAALLNECETPQGORLVNOQUIKQPLMDENRIEERLNLVEA
+LA++L+ TP & B++ ++ P+ D + ER + A
TLASVLDC TV TPMGS RMLERULHMPVRED TEVLLERQOTIGA

High-scoring Segment Pair (HSP)

365

330

Why BLAST works(1): Pigeonhole and W-mers

R B b (I I

* Pigeonhole principle

— If you have 2 pigeons and 3 holes, there must be
at least one hole with no pigeon

RKI WGD PRS

2l B

RKI VGD RRS
« Pigeonholing mis-matches

— Two sequences, each 9 amino-acids, with 7 identities

— There is a stretch of 3 amino-acids perfectly conserved
* In general:

— Sequence length: n

— ldentities: t

— Can use W-mers for W= [n/(n-t+1)]

Why BLAST works(2): K-mer matches in practice

) 6_50: ll 851, it 770, good 376, in 320

. Personagl experiment run in 2000.
o« . » 850Kb region of human, and mouge 450Kb ortholog.

K . Blasted every piece of mouse aga 1st human (6,50)
- . Identlfy slope of best fit line: g
® g %ﬂ(;;)?gx% i
} ~ Two sets of blast -alignments. i
* 320 colinear /770 alignments

¥ Can ask the questlon* e R

o i - What makes a blast hit on the line look good.
. e’ Whatmakes a blast h1t off the diagonal look ba

Count K-mers
' ' How many k-mers.do we find: n

Counted their distribution inside and ®utside the sequence,

Number of k-mers af that length

25

20

15

10

True alignments: Looking for K-mers

number of k-mers that happen for each length of k—mer

ot aar— bl —
e T T

® 38 Red 1slands come from cohnear
L £ 31 PN

%% & = . Blue islands come from off-diag
-

L 3 ¥ 2 alE

t 3 3 ¥ 2
BERYE > .
E 2 2. 3 % B

Linear

et -~ Note: more than one data point g

R =

alignments

plot

3 3 5
Bl 2 3 G
L F 3 ¥ 1% ’%é%xféx o
33%%“%%? e
MWW AT S
IR o B o 0 =
Lx £ 2 1 & %§§§X - %
ANBEBEREY %
ikt i iit —
SERBBREEEEEX T TR x %
xﬁﬁi‘i%ﬁ%ﬁ;%%%§&§3§
X.&gliiixﬁﬁ; %%%%%%
ﬂll*ﬁiﬁ%*ﬁ s

Number of k-mers at that length

pnal alignments

er alignment.

10

Log Log plot

5 10 15 20
Length k of each k—mer

a
10

Length k of each k—-mer

Extensions to the basic algorithm

|deas beyond \W-mer indexing ?

— Faster

— Better sensitivity (less false negatives)

. Filtering: Low complexity regions cause spurious hits
— Filter out low complexity in your query

— Filter most over-represented items in your database

. Two-hit BLAST

— Two smaller \W-mers are more likely than one longer one

— Therefore it's a more sensitive searching method to look for two hits
instead of one, with the same speed.

— Improves sensitivity for any speed, speed for any sensitivity
. Beyond W-mers, hashing with Combs

Extension(3): Combs and Random Projections

Key idea:

* No reason to use only consecutive symbols
* |nstead, we could use combs, e.g.,

RGIKW — R*IK* , RG**W,
* Indexing same as for W-mers:

— For each comb, store the list of positions in
the database where it occurs

— Perform lookups to answer the query
e How to choose the combs? At random

— Randomized projection:
Califano-Rigoutsos’93, Buhler'01, Indyk-Motwani’98

—Choose the positions of * at random

—Analyze false positives and false
negatives

Extension(3): Combs and Random Projections

Performance Analysis:

« Assume we select k positions, Query: RKIWGDPRS
which do not contain *, at random
with replacement

« What is the probability of a false
negative ?

— At most: 1-idpercX
— In our case: 1-(7/9)* =0.63...

 What is we repeat the process |
times, independently ?

— Miss prob. = 0.63'
— For |=5, itis less than 10%

Datab.: RKIVGDRRS
k=4

Query: *KI*G***S
Datab.: *KI*G***S

Today’s Goal: Diving deeper into alignments

1. Global alignment vs. Local alignment
— Needleman-Wunsch and Smith-Waterman
— Varying gap penalties and algorithmic speedups

2. Linear-time exact string matching

— Karp-Rabin algorithm and semi-numerical methods
— Hash functions and randomized algorithms

3. The BLAST algorithm and inexact matching

— Hashing with neighborhood search
— Two-hit blast and hashing with combs

4. Probabilistic foundations of sequence alignment

— Mismatch penalties, BLOSUM and PAM matrices
— Statistical significance of an alignment score

Varying scores/penalties for matches/mismatches

Nucleotide sequences Protein space: amino-acid similarities

AlG|T)|C
Al+1|-2|-1]|-1
G |- |+1]|-1]-1
T1-1[-1]|+1|-%
Cl-1[-1]|-"%]|+1

purine pyrimid.
Transitions:

A G| IC&Ticommon

(lower penalty)

Transversions:

* Where do these scores come from?
* Are two aligned sequences actually related?

C/S|T|P|/A|G|N|D|E|Q|H|R|K|M|I [L|VIF]Y|W
Cl9 ¢
S |14 S
T|4]1]9 i
Pl-3[4[1]|T P
A0 [1]0 14 i
G|-3/0]-2[-2[0 |6 G
N|-3/1]0]-2|-2[0 |6 N
D|3/0|4][4]|-2]1]|1]6 D
E |40 4[4]1]-2/0]2 |5 E
Q[3[0|A{4[1][2(0]0(2]5 Q
H|3|4|-2]2|2]2|1]1]0]0 |8 H
R|3/4]4]-2]4]-2]0]-2/0]1]0]5 R
K130]4[4]4]2]0[4]1[1]1]2]|5 K
M| [A(24]3]-2|-3[-2[0|2]1]1]5 M
| |4]-2|4|3|4|4][3]-3[-3[-3|-3|-3/-3|1 |4 I
L|4[2[4]|3|1|4|3|4[3|2|-3|-2[-2][2 |2 |4 L
Vi4|2/0-2]0 |-3]|-3|-3|-2]|-2|-3|-3|-2[1]|3]|1]4 V
Fl2/-2|-2|-4|-2]|-3|-3|-3|-3[-3|1[-3/-3[0 [0 |0 |1]6 F
Y|-2|-2|2|3|2|3|-2|-3|-2[4A[2|-2|-2]4[4]41]4]3 |7 Y
Wi-2|-3|2|4|3|-2|-4|-4|-3]2[-2]-3]|-3|41[-3]2]-3[1]|2 |1N|W

BLOSUM matrix of AA similarity scores

Probabilistic Model of Alignments

« we’ll focus on protein alignments without gaps
* grven an alignment, we can consider two possibilities
R: the sequences are related by evolution

U: the sequences are unrelated

* How can we distinguish these possibilities?

* How 1s this view related to amino-acid substitution
matrices?

Model for Unrelated Sequences

« we’ll assume that each position in the alignment 1s
sampled randomly from some distribution of
amino acids

* let g, be the probability of amino acid a

* the probability of an n-character alignment of x
and y1s given by

Pr(x,y|U) = ﬁ q. ﬁ qy,
i=1 =1

Model for Related Sequences

* we’ll assume that each pair of aligned amino acids
evolved from a common ancestor

* let p, be the probability that evolution gave rise
to amino acid a in one sequence and b in another
sequence

* the probability of an alignment of x and y 1s
given by

Pr(x,y[R) =] | p.,
i=1

Probabilistic Model of Alignments

 How can we decide which possibility (U or R) 1s more
likely?

* one principled way 1s to consider the relative likelithood of
the two possibilities (the odds ratio)

(e y|U) - [laI1a, Tla.a.

» taking the log, we get

Probabilistic Model of Alignments

* the score for an alignment 1s thus given by:

Pr(x,y|R)
Pr(x,y|U)

S = Zé (x.,v,)=log

* the substitution matrix score for the pair a, b
should thus be given by:

S(:Cl,,b) log{ pc.rh]
qijJQh _

Substitution Matrices

* two popular sets of matrices for protein sequences
— PAM matrices [Dayhoff et al., 1978]

— BLOSUM matrices
Henikoff & Henikoff, 1992]

* both try to capture the the relative substitutability
of amino acid pairs in the context of evolution

BLOSUMO2

Substitution Matrices

the substitution matrix score for the pair a, b 1s

given by:
s(a,b) = log{ Pus]
qcf.fqh

but how do we get values for p,, (probability that
a and b arose from a common ancestor)?

it depends on how long ago sequences diverged
— diverged recently: p,, =0 fora#0b
— diverged long ago: Pa ¥ 4.9s

Substitution Matrices

* key idea: trusted alignments of related sequences
provide information about biologically permissible
mutations

BLOSUM Matrices

* [Henikoft & Henikoft, PNAS 1992]

* probabilities estimated from “blocks™ of sequence
fragments that represent structurally conserved regions in

proteins

* transition frequencies observed directly by identifying
blocks that are at least

— 45% 1dentical (BLOSUM-45)
— 50% 1dentical (BLOSUM-50)
— 62% 1dentical (BLOSUM-62)

— eftc.

BLOSUM Matrices

* given: a set of sequences in a block

 fill in matrix 4 with number of observed substitutions
(we won't worry about details of some normalization that

happens here) b
a u,
a paired with b — H

> A,
_ b
cd 9o = Z AM

c.,d

ab

puh —

c,d

(you are not responsible for the
remainder of this section)

Statistics of Alignment Scores

Q: How do we assess whether an alignment provides good
evidence for homology?

A: determine how likely it 1s that such an alignment score
would result from chance.

3 ways to calculate chance; look at alignment scores for
— real but non-homologous sequences

— real sequences shuftled to preserve compositional
properties

— sequences generated randomly based upon a
DNA/protein sequence model

Statistics of Alignment Scores

earlier we considered how do decide if a single alignment
was more likely due to relatedness or chance

but what if we’re considered many alignments?

— e.g. what if we’re doing a BLAST search against a
large protein database?

we’d like to know how many high-scoring alignments
we’re likely to get by chance

Distribution of Scores

« Karlin & Altschul, PNAS, 1990
* consider a random model 1n which
— we’re looking for ungapped local alignments

— the lengths of the sequences in each pair are
m and n

* the expected number of alignments, £, with score
at least S 1s given by:

E(S)= Kmne *

Distribution of Scores
E(S) = Kmne *

* S1s a given score threshold

* m and n are the lengths of the sequences under
consideration

« Kand / are constants that can be calculated from
* the substitution matrix

* the frequencies of the individual amino acids

K = measure of the relative indpdce of points in context of MSP score
A = the unique positive-valued solution to S;; P,(i) P,(j) *°'=1

Statistics of Alignment Scores

to generalize this to searching a database, have n represent
the summed length of the sequences in the DB

the NCBI BLAST server does just this

with this analysis, can also calculate p-values (the
probability of a random alignment scoring at least .S)

theory for gapped alignments not as well developed

computational experiments suggest this analysis holds for
gapped alignments (but K and A4 must be estimated from
data)

Summary: Diving deeper into sequence alignment

1. Global alignment vs. Local alignment
— Needleman-Wunsch and Smith-Waterman
— Varying gap penalties and algorithmic speedups

2. Linear-time exact string matching

— Karp-Rabin algorithm and semi-numerical methods
— Hash functions and randomized algorithms

3. The BLAST algorithm and inexact matching

— Hashing with neighborhood search
— Two-hit blast and hashing with combs

4. Probabilistic foundations of sequence alignment

— Mismatch penalties, BLOSUM and PAM matrices
— Statistical significance of an alignment score

Tomorrow’s recitation: Deeper into Alignments

« Affine gap penalties
— Augmenting the state-space
— Linear, affine, piecewise linear, general gap penalty

 Statistical significance of alignment
— Where does s(x;, y;) come from?
— Are two aligned sequences actually related

3c. Massive pre-processing

Suffix Trees

Suffix trees

« Great tool for text processing

— E.g., searching for exact
occurrence of a pattern

o Suffix tree for: xabxac

Suffix tree definition

* Definition: Suffix tree ST for text T[1..n]
— Rooted, directed tree T, n leaves, numbered 1..n
— Text labels on the edges

— Path to leaf i spells out the suffix S[i..] , by
concatenating edge labels

— Common prefixes share common paths, diverge to
form internal nodes

Properties of suffix trees

° _I_I—[I1ow]m?uch space do we need to represent a suffix tree of
..n] %

* Only O(n)
— At most O(n) edges
— Each edge label can be represented as 1]i.. .

Exact string matching with suffix trees

 Given the suffix tree for text T
« Search for pattern P[1...m]

— For every character in P, .
et appropriate path of | Xabxac
the tree, reading one character P: abx
each time

— If P is not found in a path, P
does not occurin T

— If P is found in its entirety, then
all occurrences of P in T are
exgctly the children of that
node

» Every child corresponds to
exaclly one occurrence

» Simply list each of the leaf
indices
« Time: O(m)

Suffix Tree Construction

TREBRRR & e
gﬂggx%% a b X a
4 —[2

5 EE b X a C
6 i

* Running time: O(n?)
« Can be improved to O(n)

	Rapid sequence alignment�and Database search
	Tues: Sequence alignment + dynamic programming
	Today’s Goal: Diving deeper into alignments
	Today’s Goal: Diving deeper into alignments
	Intro to Local Alignments
	Global Alignment	vs. 	 Local alignment
	More variations on the theme: semi-global alignment
	Some algorithmic variations to save time/space
	Sequence alignment with generalized gap penalties
	Algorithmic trade-offs of varying gap penalty functions
	Today’s Goal: Diving deeper into alignments
	Linear-time string matching
	Karp-Rabin algorithm
	Karp-Rabin algorithm
	Hashing is good, but leads to collisions
	Karp Rabin key idea: Semi-numerical approach
	Semi-numerical approach: implementation
	Computing ts+1 based on ts in constant time
	Idea 2: Computing all numbers in linear time
	Problem: Long strings = big numbers
	Dealing with long numbers in constant time
	Idea 3: Hashing
	Problem: hashing leads to false positives
	Karp-Rabin algorithm: Putting it all together
	Today’s Goal: Diving deeper into alignments
	Increased sequence availability  new problems
	Speeding up your searches
	BLAST
	Blast Algorithm Overview
	Why BLAST works(1): Pigeonhole and W-mers
	Why BLAST works(2): K-mer matches in practice
	True alignments: Looking for K-mers
	Extensions to the basic algorithm
	Extension(3): Combs and Random Projections
	Extension(3): Combs and Random Projections
	Today’s Goal: Diving deeper into alignments
	Varying scores/penalties for matches/mismatches
	(you are not responsible for the �remainder of this section)
	Summary: Diving deeper into sequence alignment
	Tomorrow’s recitation: Deeper into Alignments
	3c. Massive pre-processing
	Suffix trees
	Suffix tree definition
	Properties of suffix trees
	Exact string matching with suffix trees
	Suffix Tree Construction

