
MIT OpenCourseWare
http://ocw.mit.edu

6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Rapid sequence alignment
and Database search

Local alignment, varying gap penalties
Karp-Rabin: Semi-numerical methods

BLAST: dB search, neighborhood search
Statistics of alignment scores (recitation)

Lecture 3 Thursday Sept 11, 2008

6.047/6.878 - Computational Biology: Genomes, Networks, Evolution

DNA

Genome Assembly

Gene expression analysis

Cluster discovery Gibbs sampling
Protein network analysis

Emerging network properties

Regulatory network inference

Challenges in Computational Biology

1 Gene Finding5 Regulatory motif discovery

Database search3

Sequence alignment

Evolutionary Theory7
TCATGCTAT
TCGTGATAA
TGAGGATAT
TTATCATAT
TTATGATTT

Comparative Genomics6

2

4

8

RNA transcript
9 10

11

13

12

Tues: Sequence alignment + dynamic programming

A C G T C A T C A

A C G T G A T C A
mutation

A G T G T C A

A G T G T C A

deletion

A G T G T C AT

begin

end

A G T G T C AT
insertion

• The sequence alignment problem
– Genomes change: mutation, insertions, deletions
– Alignment: infer evolutionary events
– Scoring metric reflects evolutionary properties

AGTGCCCTGGAACCCTGACGGTGGGTCACAAAACTTCTGGAA
G

T
G

A
C

C
T

G
G

G
A

A
G

A
C

C
C

T
G

A
C

C
C

T
G

G
G

T
C

A
C

A
A

A
A

C
T

C

• Needleman-Wunsch algorithm
– Local update rule: F(i,j) = max{up, left, diagonal}
– Save choice pointers for traceback
– Bottom-right corner gives optimal alignment score
– Trace-back of pointers gives optimal path/alignment

A C G T C A T C A
T
A
G
T
G
T
C
A

A
G

T
C/G

T
C

A

• Dynamic programming and sequence alignment
– Alignment scores are additive: decomposable
– Represent sub-problem scores in M(i,j) matrix
– Duality between alignment and path through matrix

• Dynamic programming
– Problems that can be decomposed into subparts
– Identical sub-problems: reuse computation
– Bottom-up approach: systematically fill table

Today’s Goal: Diving deeper into alignments
1. Global alignment vs. Local alignment

– Needleman-Wunsch and Smith-Waterman
– Varying gap penalties and algorithmic speedups

2. Linear-time exact string matching
– Karp-Rabin algorithm and semi-numerical methods
– Hash functions and randomized algorithms

3. The BLAST algorithm and inexact matching
– Hashing with neighborhood search
– Two-hit blast and hashing with combs

4. Probabilistic foundations of sequence alignment
– Mismatch penalties, BLOSUM and PAM matrices
– Statistical significance of an alignment score

Today’s Goal: Diving deeper into alignments
1. Global alignment vs. Local alignment

– Needleman-Wunsch and Smith-Waterman
– Varying gap penalties and algorithmic speedups

2. Linear-time exact string matching
– Karp-Rabin algorithm and semi-numerical methods
– Hash functions and randomized algorithms

3. The BLAST algorithm and inexact matching
– Hashing with neighborhood search
– Two-hit blast and hashing with combs

4. Probabilistic foundations of sequence alignment
– Mismatch penalties, BLOSUM and PAM matrices
– Statistical significance of an alignment score

Intro to Local Alignments
• Statement of the problem

– A local alignment of strings s and t
is an alignment of a substring of s
with a substring of t

• Why local alignments?
– Small domains of a gene may be only conserved portions
– Looking for a small gene in a large chromosome (search)
– Large segments often undergo rearrangements

t

s

AGTGCCCTGGAACCCTGACGGTGGGTCACAAAACTTCTGGA

A
G

T
G

A
C

C
T

G
G

G
A

A
G

A
C

C
C

T
G

A
C

C
C

T
G

G
G

T
C

A
C

A
A

A
A

C
T

C

Global alignment

AGTGCCCTGGAACCCTGACGGTGGGTCACAAAACTTCTGGA

A
G

T
G

A
C

C
T

G
G

G
A

A
G

A
C

C
C

T
G

A
C

C
C

T
G

G
G

T
C

A
C

A
A

A
A

C
T

C

Local alignment B D A

B

D

A

C

A B C

A B C D

C

D

Global Alignment vs. Local alignment

Needleman-Wunsch algorithm Smith-Waterman algorithm

Initialization: F(0, 0) = 0

Iteration:

F(i – 1, j) – d
F(i, j) = max F(i, j – 1) – d

F(i – 1, j – 1) + s(xi, yj)

Termination: Bottom right

Initialization: F(0, j) = F(i, 0) = 0

Iteration:
0

F(i, j) = max F(i – 1, j) – d
F(i, j – 1) – d
F(i – 1, j – 1) + s(xi, yj)

Termination: Anywhere

More variations on the theme: semi-global alignment

• Sequence alignment variations

Global Local

Initialization

Termination

Semi-global

Top left Top row/left col. Top row

Right columnAnywhereBottom right

Iteration:max
F(i – 1, j) – d
F(i, j – 1) – d
F(i – 1, j – 1) + s(xi, yj)

0
F(i – 1, j) – d
F(i, j – 1) – d
F(i – 1, j – 1) + s(xi, yj)

F(i – 1, j) – d
F(i, j – 1) – d
F(i – 1, j – 1) + s(xi, yj)

Some algorithmic variations to save time/space
• Save time: Bounded-space computation

– Space: O(k*m)
– Time: O(k*m), where k = radius explored
– Heuristic

• Not guaranteed optimal answer
• Works very well in practice

– Practical interest

• Save space: Linear-space computation
– Save only one col / row / diag at a time
– Computes optimal score easily
– Recursive call modification allows traceback
– Theoretical interest

• Effective running time slower
• Optimal answer guaranteed

AGTGCCCTGGAACCCTGACGGTGGGTCACAAAACTTCTGGA

A
G
T
G
A
C
C
T
G
G
G
A
A
G
A
C
C
C
T
G
A
C
C
C
T
G
G
G
T
C
A
C
A
A
A
A
C
T
C

AGTGCCCTGGAACCCTGACGGTGGGTCACAAAACTTCTGGA

A
G
T
G
A
C
C
T
G
G
G
A
A
G
A
C
C
C
T
G
A
C
C
C
T
G
G
G
T
C
A
C
A
A
A
A
C
T
C

Sequence alignment with generalized gap penalties

• Implementing a generalized gap penalty function F(gap_length)

Initialization: same

Iteration:
F(i-1, j-1) + s(xi, yj)

F(i, j) = max maxk=0…i-1F(k,j) – γ(i-k)
maxk=0…j-1F(i,k) – γ(j-k)

Termination: same

F(i,j)

Running Time: O(N2M) (cubic)
Space: O(NM)

Do we have to be
so general?

Algorithmic trade-offs of varying gap penalty functions
γ(n)

γ(n)

γ(n)

Linear gap penalty: w(k) = k*p
– State: Current index tells if in a gap or not
– Achievable using quadratic algorithm (even w/ linear space)

Quadratic: w(k) = p+q*k+rk2.
– State: needs to encode the length of the gap, which can be O(n)
– To encode it we need O(log n) bits of information. Not feasible

Affine gap penalty: w(k) = p + q*k, where q<p
– State: add binary value for each sequence: starting a gap or not
– Implementation: add second matrix for already-in-gap (recitation)

Length (mod 3) gap penalty for protein-coding regions
– Gaps of length divisible by 3 are penalized less: conserve frame
– This is feasible, but requires more possible states
– Possible states are: starting, mod 3=1, mod 3=2, mod 3=0

ed
γ(n)

Today’s Goal: Diving deeper into alignments

1. Global alignment vs. Local alignment
– Needleman-Wunsch and Smith-Waterman
– Varying gap penalties and algorithmic speedups

2. Linear-time exact string matching
– Karp-Rabin algorithm and semi-numerical methods
– Hash functions and randomized algorithms

3. The BLAST algorithm and inexact matching
– Hashing with neighborhood search
– Two-hit blast and hashing with combs

4. Probabilistic foundations of sequence alignment
– Mismatch penalties, BLOSUM and PAM matrices
– Statistical significance of an alignment score

Linear-time string matching

• When looking for exact matches of a pattern

• Karp-Rabin algorithm: interpret it numerically
– Start with ‘broken’ version of the algorithm
– Progressively fix it to make it work

• Several other solutions exist, not covered today:
– Z-algorithm / fundamental pre-processing, Gusfield
– Boyer-Moore and Knuth-Morris-Pratt algorithms

are earliest instantiations, similar in spirit
– Suffix trees: beautiful algorithms, many different

variations and applications, limited use in CompBio
– Suffix arrays: practical variation, Gene Myers

Karp-Rabin algorithm

• Key idea:
– Interpret strings as numbers: fast comparison

.

2 3 5 9 0 2 3 1 4 1 5 2 6 7 3 9 9 2 1T=

3 1 4 1 5

x = 31,415

P=

y1 = 23,590
y2 = 35,902

compute x
for i in [1..n]:

compute yi
if x == yi:

print “match at S[i]”

y3 = 59,023

y7 = 31,415

x=y7 P=T[7..11]

(this does not actually work)

compute x (mod p)
for i in [1..n]:

compute yi (mod p) (using yi-1)
if x == yi:

if P==S[i..]:
print “match at S[i]”

else:
(spurious hit)

Karp-Rabin algorithm

• Key idea:
– Interpret strings as numbers: fast comparison

• To make it work:
– Compute next number based on previous one O(1)
– Hashing (mod p) keep the numbers small O(1)

2 3 5 9 0 2 3 1 4 1 5 2 6 7 3 9 9 2 1T=

3 1 4 1 5

x = 31,415

P=

y1 = 23,590
y2 = 35,902

compute x (mod p)
for i in [1..n]:

compute yi (using yi-1)
if x == yi:

if P==S[i..]:
print “match at S[i]”

else:
(spurious hit)

compute x (mod p)
for i in [1..n]:

compute yi (mod p) (using yi-1)
if x == yi:

if P==S[i..]:
print “match at S[i]”

else:
(spurious hit)

y3 = 59,023

y7 = 31,415

(this actually works)

Hashing is good, but leads to collisions

• Consequences of (mod p) ‘hashing’
– Good: Enable fast computation (use small numbers)
– Bad: Leads to spurious hits (collisions)

Î Complete algorithm must deal with the bad

T=

mod p (ex: p=13)

T=

spurious hitvalid match

2 3 5 9 0 2 3 1 4 1 5 2 6 7 3 9 9 2 1

7

2 3 5 9 0 2 3 1 4 1 5 2 6 7 3 9 9 2 1

7 8 4 5 10 11 7 9 118 9 3 11 0 1

Karp Rabin key idea: Semi-numerical approach

• Idea 1: semi-numerical approach:

– Consider all m-mers:
T[1…m], T[2…m+1], …, T[m-n+1…n]

– Map each T[s+1…s+m] into a number ts

– Map the pattern P[1…m] into a number p

– Report the m-mers that map to the same value as p

Semi-numerical approach: implementation

• First attempt:
– Assume Σ={0,1}

(for {A,G,T,C} convert: A→00, G →01, A→10, G →11)

– Think about each T[s+1…s+m] as a number in
binary representation, i.e.,

ts=T[s+1]2m-1+T[s+2]2m-2+…+T[s+m]20

– Output all s such that ts is equal to the number p
represented by P

• Problem: how to map all m-mers in O(n) time ?
– Find a fast way of computing ts+1 given ts

Computing ts+1 based on ts in constant time

14,152 =? function (31,415)
31,415

14,152

31,415

14,152

31,415

14,152

3 1 4 1 5 2

14,152 = (31,415 - 3 * 10,000) * 10 + 2

old high-order bit

left shift new low-order
digit

Idea 2: Computing all numbers in linear time

• How to transform
ts=T[s+1]2m-1+T[s+2]2m-2+…+T[s+m]20

Into

ts+1=T[s+2]2m-1+T[s+3]2m-2+…+T[s+m+1]20 ?

• Can compute ts+1 from ts using 3 arithmetic operations:
– Subtract T[s+1]2m-1

– Multiply by 2 (i.e., shift the bits by one position)
– Add T[s+m+1]20

• Therefore: ts+1= (ts- T[s+1]2m-1)*2 + T[s+m+1]20

• Therefore, we can compute all t0,t1,…,tn-m using O(n)
arithmetic operations, and a number for P in O(m)

Problem: Long strings = big numbers

• To get O(n) time, we would need to perform each
arithmetic operation in O(1) time

• However, the arguments are m-bit long !
• If m large, it is unreasonable to assume that

operations on such big numbers can be done in
O(1) time

• We need to reduce the number range to something
more manageable

Dealing with long numbers in constant time

shift

3 1 4 1 5 2

7 8

14,152 = (31,415 - 3 * 10,000) * 10 + 2 (mod 13)

= (7-3*3)*10+2 (mod 13)

= 8 (mod 13)

old high-order bit
new low-order

digit

Idea 3: Hashing

• We will instead compute
t’s=T[s+1]2m-1+T[s+2]2m-2+…+T[s+m]20 mod q

where q is an “appropriate” prime number

• One can still compute t’s+1 from t’s :
t’s+1= (t’s- T[s+1]2m-1)*2+T[s+m+1]20 mod q

• If q is not large, we can compute all t’s (and p’) in
O(n) time

Problem: hashing leads to false positives

• Unfortunately, we can have false positives, i.e.,
T[s+1…s+m]≠P but ts mod q = p mod q

• Our approach:
– Use a random q
– Show that the probability of a false positive is small
→ randomized algorithm

compute x (mod p)
for i in [1..n]:

compute yi (mod p) (using yi-1)
if x == yi:

if P==S[i..]:
print “match at S[i]”

else:
(spurious hit)

Karp-Rabin algorithm: Putting it all together

• Key idea: Semi-numerical computation
– Idea 1: Interpret strings as numbers => fast comparison

(other semi-numerical methods: Fast Fourier Transform, Shift-And)
• To make it work:

– Idea 2: Compute next number based on previous one O(1)
– Idea 3: Hashing (mod p) keep the numbers small O(1)

2 3 5 9 0 2 3 1 4 1 5 2 6 7 3 9 9 2 1T=

3 1 4 1 5

x = 31,415

P=

y1 = 23,590
y2 = 35,902

y3 = 59,023

y7 = 31,415

(this actually works)

Today’s Goal: Diving deeper into alignments

1. Global alignment vs. Local alignment
– Needleman-Wunsch and Smith-Waterman
– Varying gap penalties and algorithmic speedups

2. Linear-time exact string matching
– Karp-Rabin algorithm and semi-numerical methods
– Hash functions and randomized algorithms

3. The BLAST algorithm and inexact matching
– Hashing with neighborhood search
– Two-hit blast and hashing with combs

4. Probabilistic foundations of sequence alignment
– Mismatch penalties, BLOSUM and PAM matrices
– Statistical significance of an alignment score

Increased sequence availability Æ new problems

• Global Alignment and Dyn. Prog. Applications
– Assume sequences have some common ancestry
– Finding the “right” alignment between two sequences

• Find minimum number of transformation operations

– Understanding evolutionary events: mutations, indels
• Sequence databases

– Query: new sequence. Subject: many old sequences
– Goal: which sequences are related to the one at hand
– most sequences will be completely unrelated to query
– Individual alignment needs not be perfect.

• Once initial matches are reported, can fine-tune them later

– Query must be very fast for a new sequence

Speeding up your searches

• Exploit nature of the problem
– If you’re going to reject any match with idperc <= 90,

then why bother even looking at sequences which
don’t have a stretch of 10 nucleotides in a row.

– Pre-screen sequences for common long stretches
• Put the speed where you need it

– Pre-processing the database is off-line.
– Once the query arrives, must act fast

• Solution: content-based indexing and BLAST
– Example: index 10-mers.
– Only one 10-mer in 410 will match, one in a million.
– (even with 500 k-mers, only 1 in 2000 will match).
– Additional speedups…

BLAST

Basic local alignment search tool - al 46 versions »
SF Altschul, W Gish, W Miller, EW Myers, DJ Lipman - J. Mol. Biol, 1990

Gish', Webb Mil er2 Eugene W. Myers3 and David J. Lipmanl ...
Cited by 21457 - Related Articles - View as HTML - Web Search

(Gapped blast: 24000 citations!)

l

l

Blast Algorithm Overview

• Receive query
1. Split query into overlapping words of length W
2. Find neighborhood words for each word until threshold T
3. Look into the table where these neighbor words occur: seeds S
4. Extend seeds S until score drops off under X

• Report significance and alignment of each match

PMG

W-mer
Database

2. Expand word
neighborhood

3. Search database for
neighborhood matches

1. Split query into words

4. Extend each hit into alignment

T

X

Why BLAST works(1): Pigeonhole and W-mers

RKI WGD PRS

• Pigeonholing mis-matches
– Two sequences, each 9 amino-acids, with 7 identities
– There is a stretch of 3 amino-acids perfectly conserved

• In general:
– Sequence length: n
– Identities: t
– Can use W-mers for W= [n/(n-t+1)]

RKI VGD RRS

• Pigeonhole principle
– If you have 2 pigeons and 3 holes, there must be

at least one hole with no pigeon

Why BLAST works(2): K-mer matches in practice

.Two sets of blast alignments.
• 320 colinear / 770 alignments

Can ask the question:
• What makes a blast hit on the line look good.
• What makes a blast hit off the diagonal look bad

Count K-mers
• How many k-mers do we find: n
• How long are they: k

Counted their distribution inside and outside the sequence.

Personal experiment run in 2000.
• 850Kb region of human, and mouse 450Kb ortholog.
• Blasted every piece of mouse against human (6,50)
• Identify slope of best fit line

Red islands come from colinear alignments
Blue islands come from off-diagonal alignments
Note: more than one data point per alignment.

Log Log plot

Linear plot

True alignments: Looking for K-mers
number of k-mers that happen for each length of k-mer.

Extensions to the basic algorithm
• Ideas beyond W-mer indexing ?

– Faster
– Better sensitivity (less false negatives)

1. Filtering: Low complexity regions cause spurious hits
– Filter out low complexity in your query
– Filter most over-represented items in your database

2. Two-hit BLAST
– Two smal er W-mers are more likely than one longer one
– Therefore it’s a more sensitive searching method to look for two hits

instead of one, with the same speed.
– Improves sensitivity for any speed, speed for any sensitivity

3. Beyond W-mers, hashing with Combs

l

Extension(3): Combs and Random Projections

• No reason to use only consecutive symbols
• Instead, we could use combs, e.g.,

RGIKW � R*IK* , RG**W, …
• Indexing same as for W-mers:

– For each comb, store the list of positions in
the database where it occurs

– Perform lookups to answer the query
• How to choose the combs? At random

– Randomized projection:
Califano-Rigoutsos’93, Buhler’01, Indyk-Motwani’98

– Choose the positions of * at random
– Analyze false positives and false

negatives

Key idea:

Extension(3): Combs and Random Projections

• Assume we select k positions,
which do not contain *, at random
with replacement

• What is the probability of a false
negative ?
– At most: 1-idperck

– In our case: 1-(7/9)4 =0.63...
• What is we repeat the process l

times, independently ?
– Miss prob. = 0.63l

– For l=5, it is less than 10%

Query: *KI*G***S
Datab.: *KI*G***S

Performance Analysis:

Query: RKIWGDPRS
Datab.: RKIVGDRRS

k=4

Today’s Goal: Diving deeper into alignments

1. Global alignment vs. Local alignment
– Needleman-Wunsch and Smith-Waterman
– Varying gap penalties and algorithmic speedups

2. Linear-time exact string matching
– Karp-Rabin algorithm and semi-numerical methods
– Hash functions and randomized algorithms

3. The BLAST algorithm and inexact matching
– Hashing with neighborhood search
– Two-hit blast and hashing with combs

4. Probabilistic foundations of sequence alignment
– Mismatch penalties, BLOSUM and PAM matrices
– Statistical significance of an alignment score

• Where do these scores come from?
• Are two aligned sequences actually related?

purine pyrimid.

Varying scores/penalties for matches/mismatches

A G T C
A +1 -½ -1 -1
G -½ +1 -1 -1
T -1 -1 +1 -½
C -1 -1 -½ +1

Transitions:
AÙG, CÙT common

(lower penalty)

Transversions:
All other operations BLOSUM matrix of AA similarity scores

Protein space: amino-acid similaritiesNucleotide sequences

(you are not responsible for the
remainder of this section)

K = measure of the relative indpdce of points in context of MSP score
λ = the unique positive-valued solution to Si,j Px(i) Py(j) eλSij=1

Summary: Diving deeper into sequence alignment
1. Global alignment vs. Local alignment

– Needleman-Wunsch and Smith-Waterman
– Varying gap penalties and algorithmic speedups

2. Linear-time exact string matching
– Karp-Rabin algorithm and semi-numerical methods
– Hash functions and randomized algorithms

3. The BLAST algorithm and inexact matching
– Hashing with neighborhood search
– Two-hit blast and hashing with combs

4. Probabilistic foundations of sequence alignment
– Mismatch penalties, BLOSUM and PAM matrices
– Statistical significance of an alignment score

Tomorrow’s recitation: Deeper into Alignments

• Affine gap penalties
– Augmenting the state-space
– Linear, affine, piecewise linear, general gap penalty

• Statistical significance of alignment
– Where does s(xi, yj) come from?
– Are two aligned sequences actually related

3c. Massive pre-processing

Suffix Trees

Suffix trees

• Great tool for text processing
– E.g., searching for exact

occurrence of a pattern
• Suffix tree for: xabxac

x
a

b

a
b

x
a

c

x
a

c

c

b
x

a
cc

c

Suffix tree definition

• Definition: Suffix tree ST for text T[1..n]
– Rooted, directed tree T, n leaves, numbered 1..n
– Text labels on the edges
– Path to leaf i spells out the suffix S[i..] , by

concatenating edge labels
– Common prefixes share common paths, diverge to

form internal nodes

1

3
4
5
6

2

x
a

b

a
b

x
a

c
x

a
c

c

b
x

a
cc

1
2

34 5

c

6x a b x a c

b x a c

x a c

a c

c

a b x a c

Properties of suffix trees

x
a

b

a
b

x
a

c
x

a
c

c

b
x

a
cc

1
2

34 5

c

6

• How much space do we need to represent a suffix tree of
T[1..n] ?

• Only O(n)
– At most O(n) edges
– Each edge label can be represented as T[i…j]

Exact string matching with suffix trees

• Given the suffix tree for text T
• Search for pattern P[1…m]

– For every character in P,
traverse the appropriate path of
the tree, reading one character
each time

– If P is not found in a path, P
does not occur in T

– If P is found in its entirety, then
all occurrences of P in T are
exactly the children of that
node

• Every child corresponds to
exactly one occurrence

• Simply list each of the leaf
indices

• Time: O(m)

T: xabxac
P: abx

x
a

b

a
b

x
a

c
x

a
c

c

b
x

a
cc

1
2

34 5

c

6

Suffix Tree Construction

x a b x a c1

c6
a c5

x a c4
b x a c3

a b x a c2

x a b x a c

a b x a c

b x a c

c

c

c

• Running time: O(n2)
• Can be improved to O(n)

	Rapid sequence alignment�and Database search
	Tues: Sequence alignment + dynamic programming
	Today’s Goal: Diving deeper into alignments
	Today’s Goal: Diving deeper into alignments
	Intro to Local Alignments
	Global Alignment	vs. 	 Local alignment
	More variations on the theme: semi-global alignment
	Some algorithmic variations to save time/space
	Sequence alignment with generalized gap penalties
	Algorithmic trade-offs of varying gap penalty functions
	Today’s Goal: Diving deeper into alignments
	Linear-time string matching
	Karp-Rabin algorithm
	Karp-Rabin algorithm
	Hashing is good, but leads to collisions
	Karp Rabin key idea: Semi-numerical approach
	Semi-numerical approach: implementation
	Computing ts+1 based on ts in constant time
	Idea 2: Computing all numbers in linear time
	Problem: Long strings = big numbers
	Dealing with long numbers in constant time
	Idea 3: Hashing
	Problem: hashing leads to false positives
	Karp-Rabin algorithm: Putting it all together
	Today’s Goal: Diving deeper into alignments
	Increased sequence availability  new problems
	Speeding up your searches
	BLAST
	Blast Algorithm Overview
	Why BLAST works(1): Pigeonhole and W-mers
	Why BLAST works(2): K-mer matches in practice
	True alignments: Looking for K-mers
	Extensions to the basic algorithm
	Extension(3): Combs and Random Projections
	Extension(3): Combs and Random Projections
	Today’s Goal: Diving deeper into alignments
	Varying scores/penalties for matches/mismatches
	(you are not responsible for the �remainder of this section)
	Summary: Diving deeper into sequence alignment
	Tomorrow’s recitation: Deeper into Alignments
	3c. Massive pre-processing
	Suffix trees
	Suffix tree definition
	Properties of suffix trees
	Exact string matching with suffix trees
	Suffix Tree Construction

