
MIT OpenCourseWare 
http://ocw.mit.edu 

6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution 
Fall 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


6.047/6.878 Fall 2008 - Problem Set 2

Due: September 24, 2008 at 8pm 

1.	 Bayes Rule and Naive Bayes Classifier. In this problem we will familiarize ourselves with Bayes Rule and 
the use of Naive Bayes for classification. Assume that the probability of there being rain on any given day 
is 0.1, and that the probability of getting in a car accident is 0.05. 

(a) Assume these two probabilities are independent. What is the probability of there being a day that is 
both rainy and you get in a car accident? What is the conditional probability of getting into a car 
accident today, given that you already know today is rainy? 

(b) From vehicle accident records, assume that we’ve determined that the probability of it being a rainy 
day, given that a car accident was observed is 0.4. Using Bayes’ Rule and the prior probabilities, what 
is the conditional probability of getting into a car accident today, given that you already know today 
is rainy? 

(c) Why are the conditional probabilities you computed in parts (a) and (b) different? 

(d) The following table describes features for DNA sequences and the class of corresponding DNA sequence. 
GC content describes the fraction of Gs and Cs (as opposed to As and Ts) in the DNA sequence. 
Complexity describes the degree of randomness of the sequence. Repeats are stretches of DNA that 
are highly repetitive and occur multiple times in a genome. Motifs are sites where transcription factors 
bind. 

GC Content Length Complexity Class 

Low Long High Gene 
Low Long Low Gene 
High Long High Repeat 

Medium Short High Motif 
Medium Short Low Motif 

High Long Low Repeat 
High Short High Motif 

Medium Long High Gene 
High Long Low Repeat 
High Short High Motif 

Use the Naive Bayes classifier to predict this genes class (show your work): 

GC Content Length Complexity Class 

Medium Long Low ? 

2.	 Bayesian Decision Theory. 

For many classification problems, our objective will be more complex than simply trying to minimize the 
number of misclassifications. Frequently different mistakes carry different costs. For example, if we are 
trying to classify a patient as having cancer or not, it can be argued that it is far more harmful to misclassify 
a patient as being healthy if they have cancer than to misclassify a patient as having cancer if they are 
healthy. 

In the first case, the patient will not be treated and would be more likely to die, whereas the second mistake 
involves emotional grief but no greater chance of loss of life. To formalize such issues, we introduce a loss 
function Lkj . This function assigns a loss to the misclassification of an object as class j when the true class 
is class k. For instance, in the case of cancer classification Lkj might look like (where the true class k is 
along the x axis): 

True Cancer True Normal 

Predict “Cancer” 0 1 
Predict “Normal” 1000 0 
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Which says that there is a loss of 1i f  we misdiagnose a healthy patient as having cancer, but a much bigger 
loss of 1000 i f  misdiagnose a patient with cancer as normal. 

(a) In classification, we do not know the actual class k of a data sample d (a patient in our example). 
Thus, when computing the loss of predicting class j for sample d ,  we can only calculate expected loss. 
Knowing the class priors P ( k )  and likelihoods P ( d l k ) ,  derive the equation for the expected loss Ek[L] 
of assigning sample d to  class j. 

(b) Say, for every data point we wish to  choose the class which minimizes the quantity you derived in part 
(a). For the case where the loss matrix is Lkj= 1-Ikj(Ikjare the elements of the identity matrix), 
determine what such a decision rule would effectively do. 

(c) What is the interpretation of the loss matrix in part (b). 

3. K-means clustering. In this problem you will implement the K-means clustering algorithm. 

(a) Implement K-means using any programming language. Include the source code with your write-up. 
A t  a minimum, your implementation should: 

i. Take a tab-delimited file with an N x M matrix of N data points with M features each. In other 
words, each row is a data point and each column is a feature value associated with that data 
point. 

ii. Accept K (the number of clusters) as a parameter. 

iii. Output the M-dimensional mean vectors for each of the K clusters, and also an assignment for 
each clustered data point. 

iv. Your stopping/convergence condition can be as simple or complex as you wish. 

Note: Use generate-c lusters  .py to  make testing input data. You will find that the easiest data to  
cluster will be spherical (unit variance in both dimensions) and well separated (cluster means farther 
than 2 standard deviations apart). Run the script with no arguments to  display its help information. 
While generate-c lusters  .py will create only two dimensional data points, your algorithm should 
accept an arbitrary number o f  dimensions (e.g. 22-dimensions in part (d)). 

(b) Implement the fuzzy K-means algorithm with the same features listed above. Include source code in 
your write-up. 

(c) We will first apply both of these algorithms to  synthetic data. Use the provided Python script 
generate-c lusters  .py  for this purpose. 

i. Generate N = 50 points from 3 Gaussians (150 points total). Generate a data set that is difficult 
t o  cluster and requires a nontrivial solution. For example, means should be within 2 standard 
deviations of each other and one of the Gaussians should be elongated, not spherical. 

Run both algorithms on this data with K = 2,3 and 4 cluster centers. Discuss what happens 
when the number of cluster centers is not 3. Include the parameters chosen for data generation. 

To visually assess the accuracy of your algorithms for the runs above, include at least one 
clustering plot for each algorithm. The clustering plot should show a scatter of  the data 
points and indicate BOTH the "correct" and "predicted" cluster for each point. For example, 
each point might be drawn as a *, +, or - according t o  the correct cluster, and colored red, 
green, or blue according to  your predicted cluster. (Note that the "correct" cluster is provided 
as a third column in the output of generate-clusters.py.)  Optionally, you may want to  
also plot the final predicted cluster centroids. (You do NOT need to  include any code for 
generating plots, just the plots themselves) 

ii. The K-means algorithm tries t o  find the cluster centers p that minimize the objective 



6.047/6.878 Fall 2008	 Problem Set 2 

where Ci is the set of points assigned to cluster i. K-means is a greedy algorithm and is not 
guaranteed to find the global minimum of this objective. In fact, the quality of the resulting 
solution often depends significantly on the cluster initializations. For K = 3, repeat K-means 
100 times with different random cluster initializations, and report the best µ values (i.e., which 
minimize the objective). How much variation was there? 

(d) Now we will apply your K-means implementation to a real-world problem, described in the paper 
Boshoff et al. (2004) “The Transcriptional Responses of Mycobacterium tuberculosis to Inhibitors of 
Metabolism.” Journal of Biological Chemistry. 279(38):40174-40184. 
We provide you with a subset of their data (see ‘description.txt’ file). Each of the 3 data files represents 
the treatment of the TB bacteria, Mycobacterium tuberculosis, by a different class of drugs. One class 
inhibits cell wall synthesis, one blocks translation, and the last blocks iron uptake. For each of the 3924 
genes the authors measured the gene expression for specific drugs within each class. We are interested 
in clustering the genes to find groups of genes that are coordinately regulated in their response to each 
drug. This may happen, for example, if there is one gene which acts as a “master switch”, regulating 
various other downstream genes. 

i. For	 each of the 3 classes of drugs, use one of your programs to cluster the 3924 genes into 
K = 150 clusters. Feel free to use a different K if you find it produces better results. Since 
plotting high dimensional data is difficult, report some other statistics about your clusters (i.e. 
such as a bar chart of their sizes). Note: since this is real data, do not worry if your clusters are 
not as clearly defined. There is no known answer. 

ii. Each gene is represented as a 18-22 length vector, called	 an expression profile, which contains 
the data: log(expression in drugged sample/expression in control sample) for 18-22 different 
conditions. The length (�2 norm) of each expression vector indicates how much the drug changes 
the gene’s expression relative to the control (no drug present). Find the gene that is most sensitive 
for each drug (what is it?), and then look at what cluster it belongs to. Do a Google search for 
some of the genes in each cluster (see ‘rowNames.txt’ file). List a few functions that these genes 
are associated with. 

iii. For extra credit, plot the results of your clustering in such a way as to visualize your cluster centers, 
cluster assignments, and actual cluster labels for these data sets. 

iv. For more extra credit, see what commonalities you can find between the genes in each cluster 
(why might they be co-regulated?). Are there conserved promotor motifs? Do they belong to 
the same operon? Perhaps genes in expression clusters are more likely to be neighbors on the 
chromosome than genes chosen at random, since genes in operons are cotranscribed. Note: this 
is exploratory work – we do not know the answers! 

4.	 Grad only problem: Expectation Maximization in Gaussian Mixtures. Recall from lecture that fuzzy 
K-means is a form of expectation maximization using a mixture of Gaussians. We are going to show that 
in this problem. 

For this problem, we are going to assume that we are given an independent, identically distributed sample 
of N points x1, . . . , xN . We are told that each xi is drawn from one of K Gaussian distributions with unit 
variance but with unknown means µk. Consequently each xi can be associated with a label Yi from the 
set {1, . . . ,K}. But we are not told what these labels are. The Gaussians are equally probable, i.e., the 
prior probability that a data point is drawn from one of the Gaussians is 1 . Our goal is to estimate (1) the K 
means µk for each of the K Gaussians, and (2) the probability that each xi belongs to each Gaussian. 

To do so, we will use Expectation-Maximization (EM). As you learned in lecture, EM is a re-estimation 
procedure that – loosely speaking – iterates between estimating the missing labels (Yi in our case) given the 
current best parameter values (µk in our case) – this is the E-step – and then re-estimating the parameters 
given these estimates by choosing these parameters to maximize the expected log-likelihood of the data and 
the labels – this is the M-step. 

(a) Suppose that Xi is sampled from a Gaussian distribution with unit variance: Xi ∼ N (µk, 1). Write 
out the equation for Pr(Xi = xi; µk). 
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Note: The notation “; µk” just clarifies that the probability distribution for Xi uses the parameter µk 

for the Gaussian’s mean. 

(b) Now lets estimate the probability of the unobserved labels. Given a set of K means µ = {µ1, . . . , µK }
and a data point xi, write the equation for Pr(Yi = k | Xi = xi; µ), using the result from part (a). 

Hint: Use Bayes Rule. 

(c) Assume for a moment we knew the labels associated with each point.	 Write out the equation for 
log Pr(x1, . . . , xN , y1, . . . , yN ; µ), the log-likelihood of the N points and their labels. We denote the 
log-likelihood as L(µ), making clear its dependence on the parameters µ. Notice that L(µ) is a 
function of x1, . . . , xN , y1, . . . , yN . 

(d) However, we do not know the labels.	 But part (b) did provide us with Pr(Yi = k | Xi = xi; µ). We 
can use this to find the expected log-likelihood, Q(µ). The expected value of a general function f(x) 
is just x Pr(x)f(x). Using your answer from (b) and (c), write out the equation for the expected 
value of the log-likelihood, Q(µ) = E[L(µ)], where the expectation is of the Y variables, using the 
conditional the probability distribution Pr(Yi = k | Xi = xi; µ(t)). The notation µ(t) refers to the 
current best estimate of the parameters. You should consider µ(t) a constant quantity, provided to 
you (from the previous iteration). The quantities computed here are the output of the E-step of EM. 
Show your derivation. 

Note: Feel free to replace constants that will not influence subsequent parts of this problem with a

symbol (e.g. C).


Hint: You may want to use the linearity of expectation.


(e) During the M-step of EM, we wish to choose µ = {µ1, . . . , µK } to maximize the expected log-
likelihood (which, notice, is a function of µ) generated during the previous E-step. To do so, we need 
to calculate the derivatives ∂Q(µ) . Derive the equation for these derivatives. ∂µk 

(f) To find the	 µ which maximize the expected log-likelihood, take your answer from part (e), set the 
derivative ∂Q(µ) = 0, and solve for µk. We denote this value of µ as µ(t+1): these would then be ∂µk 

used in the next iteration of EM. 
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