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Probability, Bayes Nets, Naive Bayes, Model Selection 
Major Ideas: 

1.  Intro to Bayes nets: what they are and what they represent.
2.  How to compute the joint probability from the Bayes net.
3.  How to compute the conditional probability of any set of variables in the net.  

�❍     Marginalization and Exact Inference 
�❍     Bayes Rule (backward inference) 

4.  Naive Bayes - classification using Bayes Nets 
5.  Bayesian Model Selection / Structure Search 
6.  Generative versus Discriminative Models
7.  (Optional) D-Separation Rules for determining conditional independence in Bayes Nets
8.  (Optional) Noisy OR

 
Bayes Nets are a compact way to represent the Joint Distribution of a set of Random Variables. 
The nodes represent Random Variables.   Random variables are variables that provides a mapping from 
values to probabilities. 
 
We have the following Bayes net from recitation.  There are five random variables (to simplify we've 
removed the MIT variable) 

-  

H = {T, F}   There is a Hack on Campus
A = {T, F}   There is an Art exhibit on Campus
U = {T, F}   We see a Uniformed police man.
S = {T, F}   We see a Sculpture
B = {T, F}   We see Business People in suits on 
Campus

Next to each node, you have conditional probability tables (CPT), these represent the conditional 
probability of the underlying Random Variable conditioned on its parents.
 
The CPT for nodes H and A have only one value because (not H) or (not A) is simply one minus the 
value shown.    Variables U, S, B have CPTs that are dependent on their parent variables.
Generally, in a CPT, we use the first n-1 columns to denote the settings of the "given" Variables.   If 
the variable is binary, the last column is the True value of probability of the variable for the settings of 
the given variables.  If a variable is multivalued, then When dealing with binary variables we don't 
show the implicit 1-p column.
 
For Example S's CPT fully expanded is:

S=F 
H A S=T (not 

shown) 

F F 0 1 

F T 0.8 0.2 
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T F 0.3 0.7 

T T 0.86 0.14 

So using the CPT above.   What is the probability of NOT seeing a sculpture if we know there is a Hack 
and there is an Art exhibit?   Or   what is P(S=F | H = T, A = T)   Answer:  0.14 
 
A Matter of Parameters 
Sometimes questions may ask "how many parameters" are in a given Bayes Net?   By number of 
parameters we really mean the number of CPT entries.   This is because the Bayes Net is fully 
specified only when all the parameters are assigned some numerical value.   Note that the hidden 
columns like P(S=F|H,A) does not count in that number, because those entries can be gotten by 1-P
(S=T|H,A). 
 
So how many parameters does our "Hack or Art show" network have? 
#parameters =  #cpt entries in network = 1 + 1 + 2 + 4 + 2 = 10 
 
Joint probability
or computing the probability of a specific world state 
 
Suppose we know there is a hack on campus, and there isn't an art exhibit, we see a uniformed officer, 
a sculpture, and we don't see any Business men. 
The probability of such a world is:  P(H=T, A=F, U=T, S=T, B=F)  
 
We can easily compute the Joint probability from a Bayes net! 
For any Bayes Net: 

    
 

 
In other words, Bayes Nets is really an encoding of the conditional dependencies of a set of random 
variables.   All variables are independent of other variable given their parents. 
For our example: 
       

So for the specific setting above: 
 
    P(H=T, A=F, U=T, S=T, B=F) = P(H=T)P(A=F)P(U=T|H=T)P(S=T|H=T, A=F)P(B=F|A=F) 
        = 0.05 x (1-0.025) x 0.5 x 0.3 x (1-0.15) = 0.006215625 
 
Marginalization over the Joint 
Example:  How to compute the probability of P(S)? 
We can compute any arbitrary probabilities from joint probabilities by the method of "marginalization" 
= summing out variables that we don't want. 

 

 

 

Next move the sums so that a sum is placed only before all the terms that depend on it.   
e.g.  P(S|H,A) depends on sum A and sum H so those sums occur left of it: 
 

     

 
Notice that:   , and same for   ! 
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So dropping the B and U terms we get the final summation: 
 

     

Which works out to: 

 

= 0.0347 
 

Ancestor (Sub)Graph: a subgraph of the Bayes Net where only variables of interest and 
their ancestors are drawn 
 
Ancestor Graph Shortcut:   
Any variable that is not in the "ancestor" graph for the set of variables of interest 
we can remove from the summation.    

 
Example:  
In computing P(S),  S is the variable of interest, H, A are both ancestors of S, but not U or B.  So P(U|
H), P(B|A) can be safely dropped.  
In computing P(S | B),  S, B are variables of interest, H, A are ancestors of S, and B.   So P(U|H) can 
be dropped from the summation. 
 
General Method for computing any P(X) from a Bayes Net 
1. Write P(X) as a marginalization sum over joint probabilities. 
2. Cross out/ignore terms that are not in the ancestor graph of X.
3. Expand the summation and simplify 
 
Example: 
 

           Ancestor graph of B only include variables B and A. 

 

 

 
General Method for computing any P(X|Y) from a Bayes Net: 
1. Write P(X, Y) as a marginalization sum over joint probabilities (without summing over X, Y). 
2. Cross out/ignore terms that are not in the ancestor graph of X and Y. 
3. Write P(Y) as a marginalization sum over joint probabilities. 
4. Cross out/ignore terms that are not in the ancestor graph of Y. 
5. Perform division: P(X,Y)/P(Y), and simplify. 
 
Example:   What is P(S|B)? 
 

     From the definition of conditional Probability 

Both of these terms can be computed via marginalization over the Joint. 
 

 

 
 

 
Both terms above have been simplified using the ancestor graph trick. 



Probability

So finally dividing one by the other: 
 

 

 
All the terms in the equation above can be read off of the Bayes Net CPTs.  The rest is just arithmetic 
(or in Sadoway-ese = stamp collecting). 
 
The methods outlined here is very "algorithmetizable"; you can easily create a computer program that 
can decompose any probability into a series of CPT lookups.  This method is also called "exact 
inference". 
 
NOTE:  There are other ways you can arrive at P(S|B).  For instance the following is a possible way: 

 

However, notice that P(S|A) is also a probability that you need to compute (that you can't just read 
off the network).  P(A|B) is not readable from the network but P(B|A) is, but you need to use bayes 
rule to invert it.    
 
Backward Inference 
Sometimes we want to compute probabilities going "against the arrows" in the BN.  To do that it might 
be handy to use Bayes' Rule: 
 

 

 
 
Here is a variant of Bayes Rule with conditionals: 
 

 

 
Optional Derivation: This is Bayes rule variant is derived by expanding the joint using the chain rule 
and then canceling out the P(A) terms. 

 

 
Example:  Compute P(H | S) using Bayes rule.

 

1. We can read P(H) from the Bayes net.   P(S) we've computed earlier. 
P(S | H) =  

            = 0.86 * 0.025 + 0.3 * 0.975  = 0.314
2. Plugin in the value of P(S) from above: 
P(H | S) =  

            = (0.314 * 0.05) / 0.0347 = 0.45 
 
Explaining Away 
How does the probability of a hack H change if we knew only there is a statue P(H|S) 
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versus if we know there is a statue and also that there is an art exhibit on campus. 
In other words, compare:   P(H | S) versus P(H | S, A). 
 
P(H | S) we already know as 0.45 
 
To compute P(H|S,A), we use the conditional variant of Bayes Rule: 
 
P(H | S, A) = P(S A | H) P(H) / P(S, A) 
P(H | S, A) = P(S | H, A) P(H | A) / P(S | A)     # conditional variant of Bayes Rule 
                = 0.86 * 0.05 / 0.803              P(H | A) = P(H)   (A and H are independent) 
                = 0.054 
 
Notice that P(H|S, A) < P(H|S). 
 
We know that a sculpture can be caused by two things, a hack on campus or an art exhibit. 
If we know that an art-exhibit is occurring, then the probability of the statue being a hack declines.   
Because the knowledge of the art-exhibit cause "EXPLAINS AWAY" the hack cause of the statue.     
 
NOTE: this explaining away phenomena occurs when there is a "Noisy OR" configuration in the network. 
 
Naive Bayes 
Popular method for doing classification in the Bayes Net formalism. 
Network structure: 

 
We are given likelihood of a class generating some certain set of features P(F_i | c) and we are given 
the prior class probabilities P(c)  (how likely each class is).
  
Then we use Bayes Rule to make predictions of the class given the features:  
i.e. P(c | features) 
 

     

The method is Naive because we assume that features given the class are all independent:

 

 

 
 
We are only interested in the arg max class.   So we can ignore the denominator (the normalization 
constant P(F_1...F_n), because it is common to all computations. 
 
We estimate P(c) (The class prior) and P(F|C) (feature likelihoods) from data we observe/collect. 
 
In some practice a log is computed instead of a product, because probabilities involved can become 
very small.   Log probabilities are used to prevents double imprecision problems. 
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Bayesian Sorting Hat for MIT undergrads 
We conducted an impromptu survey to determine which dorms group to "sort" incoming freshman.  We 
collected data by surveying existing resident of MIT's 3 major dorm groups.   Then we apply Naive 
Bayes to classify new students based on questionnaires they fill in during orientation. 
 
We surveyed 30 random students, 10 from each of the MIT dorm groups.  Each surveyed student is 
asked to fill out a simple questionnaire with these questions: 
0. Which dorm do you live in: { East Campus, West Campus, or FSILG } 
1. Are a Pyro - i.e. do you enjoy performing feats with fire (or enjoy inadvertently trigger fire alarms)? 
2. Are you a foreign student or do you have a penchant for studying foreign languages? 
3. Are you in good shape? 
 
Here are the results.  The last column shows how many students were surveyed in each dorm group. 

 Pyro ForeignLang GoodShape   # surveyed 

East Campus 8/10 1/10 3/10   10    10/30 

West Campus 3/10 6/10 3/10   10    10/30 

FSILG 1/10 3/10 8/10   10    10/30 
 
We next use these counts to make estimates on probabilities: 
     
    P(C)          (prior probability of being in any campus)    
    P(F_i | C)    the likelihood given a campus. 
 
For example:  P(Pyro=True | C=East Campus) = 8 /10      P(Language = True|C= FSILG) = 3/10 
 
Question 1: a new student with the following answers should be sorted into which dorm group? 
 
Pyro = True 
ForeignLang = False 
GoodShape = False 
 
Translation:  Compute argmax P(C | P=T, F=F, G=F) 
East Campus: 
   = P(P=T | C=East) P(L=F|C=East)P(G=F|C=East)P(C=East) 
   = (8/10) (1-1/10)(1-3/10) (10/30) 
   = (8*9*7*10)/30000 
   = 72 * 7 * 10/30k 
West Campus: 
   = P(P=T | C=West) P(L=F|C=West)P(G=F|C=West)P(C=West) 
   = (3/10) (1-6/10)(1-3/10) (10/30) 
   = (3*4*7*10)/30000  
   = 3 * 28 * 10/30k 
FSILG: 
   = P(P=T |C=FSILG) P(L=F|C=FSILG)P(G=F|C=FSILG)P(C=FSILG)  
   = (1/10) (1-3/10)(1-8/10) (10/30) 
   = (1*7*2*10)/30000 
   = 14 * 10 / 30k 
 
The largest value for Pyros is East Campus. 
 
Q: What about an all-round student who checks all the boxes true in the incoming questionnaire? 
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or what is argmax_C P(C | Pyro = True, ForeignLang = False, GoodShape = False)? 
 
East Campus 
   = P(P=T | C=East)P(L=T|C=East)P(G=T|C=East)P(C=East) 
   = (8/10) (1/10)(3/10) (10/30) 
   = (8*1*3*10)/30000 
   = 8 * 30/30k 
West Campus 
  = P(P=T | C=West)P(L=T|C=West)P(G=T|C=West)P(C=West)  
  = (3/10) (6/20)(3/20) (20/30) 
  = (3*6*3*10)/30000 
  = 18 * 30/30k 
FSILG 
  = P(P=T | C=FSILG)P(L=T|C=FSILG)P(G=T|C=FSILG)P(C=FSILG)  
  = (1/10) (3/10)(8/10) (10/40) 
  = (1*3*8*10)/30000 
  = 8 * 30/30k 
 
The maximum C is West Campus.   
 
Real World Applications of Naive Bayes 
Naive Bayes is most commonly used in text Classification.  Where word are features.   The presence or 
absence of a word can be used to determine the topic of a document. 
 
For instance, detecting whether a message is Spam or Ham: 

 

Here S = T we have spam, S = F we have ham.   We train our classifier with documents labeled as 
spam or ham, and then classify new documents by computing whether S=T or S = F is more likely.  P
(S) reflects the fraction of normal emails that are either spam or ham.   
 
Bayesian Model Selection/ Structure Search 
or How to learn the parameters or the structure of models: 
 

   

 
 
We can use Bayesian probability to find the best Bayes net that explains the collected data.   
 
A model could be a collection of different Bayes nets on the same set of variables.  Each model differing 
in the dependencies they define (i.e. the connections in the net).
 
P(Data |M) is the likelihood of the data given the model.   We can compute this by computing the 
probability of the observed data set using model M.   This probability can be sometimes a joint 
probability, or the probability over only the observed variables (if some variables are hidden).
 
P(M) is some prior belief on the likelihood of each model.  
We can make P(M) uniform (in which case all models to be equally likely) 
Or we can prefer certain "goldilock" models over others.   Models that are neither too connected nor too 
unconnected.    For instance, we can make P(M) a Gaussian distribution over the number of 
connections, with the mean at some k level of connectedness.
 
Food for thought:  With 5 variables, how many models have 0 connections?  How many are fully 
connected?  i.e. with 1+2+3+4 = 10 arrows.   How many models have k arrows? 
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To find the best model, we use P(M|data) as the search heuristic.   The search algorithm can be a hill 
climbing, best-first, A* or beam search.   At each step we make a slight modification on the current M 
to make it a new model M'  (by changing a dependency link or adding or removing a dependency link). 
   Because searching for a good model involves a search over potential exponential space of possible 
models this problem is often NP-hard.    
 
Example, Finding The Best Model Parameters
Model selection can also be used to find the best parameters given a model. 
In the example given in lecture, model selection was used to determine the most likely coin given some 
data.    We are shown the result of a series of coin flips as:  HHHHT.   We are told that the coin flips 
are generated by grabbing a random coin from a bag containing 3 types of coins.   
 
Fair coins            P(H|M=fair) = 1/2
Weighted coins    P(H|M=weighted) = 3/4
Heads-only coins  P(H|M=heads-only) = 1.0
 
Using Model selection:   We quickly compute that P(M | data) for all 3 types of coins,
Assuming P(M) = 1/3; uniform for all three types of coins
 
P(data|M=fair)P(M=fair) = (1/2)4 (1/2)1 (1/3) = 0.01
P(data|M=weighted)P(M=weighted) = (3/4)4 (1/4)1 (1/3)= 0.026
P(data|M=heads-only)P(M=heads-only) = (1)4 (0)1 (1/3) = 0
 
then  argmax_M P(M|data) = weighted 
 
Had we observed a sequence HHHHH instead, then
 
P(data|M=fair)P(M=fair) = (1/2)5 (1/3) = 1/32 = 0.01
P(data|M=weighted)P(M=weighted) = (3/4)5 (1/3)= 0.079
P(data|M=heads-only)P(M=heads-only) = (1)5 (1/3) = 1/3
 
argmax_M P(M|data) = heads-only
 
Generative vs. Discriminative Models 
 
Bayesian models (Bayes Nets) are also referred to generative models.  Because they model a 
hypothetical underlying generative process, describing how some observed data might have been 
produced.   Classification using generative models involve finding a model that most closely explains 
the observations. 
 
Discriminative models aims instead to model the boundary between two classes.   SVM is a classic case 
of a discriminative model.  The function we "learn" through the process of training, tell us more about 
the structure of the separation boundary rather than the underlying processes. 
 
Discriminative Models empirically perform better at classification tasks because they are focused on 
separatability.   Generative models are attractive because it tries to model the process, and hence can 
better explain the underlying physical processes. 
 
Determining Conditional Independence of Variables  
in Bayes Nets (Optional)  
Bayes Nets encode conditional dependencies between random variables but not independencies. To 
figure out whether two variables X, Y are independent given a third set of variables Z we apply a 
graphical method called D-separation. 
 
The D-separation Algorithm:
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1. Find all paths between X and Y nodes in the Bayes Net. 
2. Determine if a given path is "blocked".   
A path is blocked if any component along the path one of the following rules hold true:

chain: i -> m -> j if m is in the given set Z 

chain: i <- m <- j  if m is in the given set Z 

fork:   i <- m -> j if m is in the given set Z 

collider:  i -> m <- j if m (or descendant of m) is not in the given set 

3. If all paths from X and Y are blocked then X and Y are independent given set Z.
 
Examples using the Hack or Art Exhibit Bayes Net: 
Q:  Are H and A variables independent?  (Given nothing)
A:  Yes, there is a path from H, A through S.   This path triggers the collider rule.
But since Z is empty, i.e. we are given nothing, the path is blocked.
Implication  P(A|H) = P(A)  and P(H | A) = P(H)  by the definition of independence.
 
Q: Are H and A variables independent given S?
A:  No, P(H | S, A) != P(H | A)   We actually proved this via computation above.
But using d-separation, the collider path component from H to A through S is no longer blocked!  So 
D-separation tells us that H and A are not independent given S.
 
Q: Are U and B variables independent? (Given nothing.) 
A:  The path from U to B passes through H, S, A.
The path component U <- H -> S is a fork, and since H is not given, this path component is 
unblocked.   Similarly the path component S <- A -> B is also unblocked.
But the path component  H -> S <- A  is blocked via the collider rule, since S is not a given.
 
Therefore the entire path from U to B is blocked!   So U and B are independent given no 
information.   This implies P(U|B) = P(U)  and P(B|U) = P(B)
 
Q: Under what circumstances would U and B not be independent?
A:  When S is known.   When S is known, then the path from U to B would be unblocked.
This implies   P(U | B, S) !=  P(U | S) 
 
Q: Is there an even easier way to determine independence relationships?
A: Yes.   Here is an alternate way (taught in Machine Learning 6.867) that systematically 
determines variable conditional independencies graphically. 
1. Convert your Bayes net into an undirected graph. (i.e. remove the arrows)
2. Draw the ancestor graph with respect to the variables of interest, X, Y, and given Z
3. "Moralize" the parents in the graph:  i.e. draw an undirected edge between any two pairs of 
parents.
4. Remove all evidence nodes Z.
5. Check if there is exists an path from X to Y. 
If there is no path between X and Y, then X, Y are independent given Z.   If there is a path then X, 
Y are not independent given Z. 
 
Noisy OR (Optional) 
In order to make CPTs (Conditional Probability Tables) more compact, some causal relationships can 
be models as an OR of the negation of causes. 
 
In our Hack-or-Art-Exhibit example, H and A are causes, and S is the observed result: 
To model S's CPT using a Noisy-OR parametrization, we define two probabilities p and q.    
 
p being the probability that a statue is does not appear when there is an Art Show 
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q being the probability that a statue is does not appear when there is a Hack.   
 
Using this noisy OR parameterization we can condensed the original 4 parameter CPT down to 2 
parameters.   When the number of causes is k, the number of CPT entries is 2k but with noisy-OR 
only k parameters are needed.  Hence the number of CPT parameters grows linearly with noisy-OR 
rather than exponential. 
 

H A S=T 

S=F 
(this 
column 
not 
shown) 

F F 0 1 

F T 1-p p 

T F 1-q q 

T T 1-pq pq
 
When the CPT of a multi-causal relationship implements a noisy OR configuration, then we can use 
the explaining away intuition to reason about changes in probabilities.   The phenomenom of 
explaining away can still occur with non-noisy-or configurations but it is not guaranteed to always 
work. 

https://docs.google.com/Doc?tab=edit&dr=true&id=dhqhm2bq_182f74bvzfz
https://docs.google.com/abuse?id=0AbO0KikZO04vZGhxaG0yYnFfMTgyZjc0YnZ6Zno
https://docs.google.com/abuse?id=0AbO0KikZO04vZGhxaG0yYnFfMTgyZjc0YnZ6Zno
https://docs.google.com/
https://docs.google.com/
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