
Search and RBS Notes

Rule Based Systems and Search Notes

 
1. Rule-Based Systems: 
 
General Forward Chaining Pseudo code 
 
1. For all rules, and assertions, find all matches, i.e. Rule+Assertion combinations. 
2. Check if any of the matches are defunct.   
    A defunct match is one where the consequents from the match are already in the DB. 
3. Fire the first non-defunct match. 
4. Repeat until no more matches fire. 
 
NOTE:  If rules have a DELETE, then assertions maybe be removed from DB, then matches in 
step 2 can become "un"-defuncted.  Look at quiz 1 from 2006, for example of a case where 
DELETE causes an infinite loop. 
 
General Backchaining Pseudo code: 
 
function rule_match_goal_tree(hypothesis, rules, DB) 

1. check hypothesis against DB exit if satisfied 
2. Find all matching rules: any rule with a consequent that matches hypothesis 
3. For each rule in matching rules: 
      i) binding <- unify rule.consequent and hypothesis 
      ii) subtree <- antecedents_goal tree(rule, rules, binding, DB)  
      iii) Optimization: If subtree evaluation returns true, 
                        we can short-circuit because we are ORing subtrees. 
return OR(rule subtrees) 

 
function antecedent_goal_tree(rule, rules, binding, DB) 

for each antecedent: 
1. new-hypothesis <- antecedent + binding 
2. check new-hypothesis against DB, if matched, update binding 
3. subtree <- rule_match_goal_tree(new-hypothesis, rules, DB)  
4. Optimization: Short circuit if the antecedent logics calls for it 
    i.e. if in an AND then the first failure fails the whole branch. 
     if in an OR, the first success implies the whole branch succeeds 

        return {antecedent logic}(antecedent subtrees)  
 
Note:  If during antecedent_goal_tree step 2, there are multiple matches of the hypothesis in 
the DB then we can opt to create an OR subtree to represent all those database instantiations. 
 
2. Search: 
 
Terminology: 
 
Informed vs. Uninformed 

Whether there is some evaluation function f(x) that help guide your search.  Except for 
BFS, DFS, and British Museum all the other searches we studied in this class are 
informed in some way. 

Complete vs. Incomplete 
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If there exists a solution (path from s to g) the algorithm will find it. 
 
Optimal vs. Non-optimal 

The solution found is also the best one (best counted by the cost of the path). 
 
Generic Search Algorithm: 
 
function Search(graph, start, goal):  
   0. Initialize 
    agenda = [ [start] ] 
    extended_list = [] 
 
   while agenda is not empty: 
       1. path = agenda.pop(0)  # get first element from agenda & return it 
       2. if is-path-to-goal(path, goal) 
             return path  
       3. otherwise extend the current path if not already extended 
            for each connected node
               make a new path (don't add paths with loops!) 
       4. add new paths from 3 to agenda and reorganize agenda  
         (algorithms differ here see table below) 
  fail!
 
The code in red only applies if you are using an extended list.
 
Agenda keeps track of all the paths under consideration, and the way it is maintained is 
the key to the difference between most of the search algorithms. 
 
Loops in paths:  Thou shall not create or consider paths with cycles in step 3.  
 
Extended list is the list of nodes that has undergone "extension" (step 3). 
Using an extended list is an optional optimization that could be applied to all algorithms. 
(some with implications, see A*)    In some literature extended list is also referred to as 
"closed" list, and the agenda the "open" list. 
 
Backtracking:  When we talk about DFS or DFS variants (like Hill Climbing) we talk about 
with or without "backtracking".   You can think of backtracking in terms of the agenda.   If 
we make our agenda size 1, then this is equivalent to having no backtracking.    Having 
agenda size  > 1 means we have some partial path to go back on, and hence we can 
backtrack. 
 
Exiting the search:  Non-optimal searches may actually exit when it finds or adds a path 
with a goal node to the agenda (at step 3).  But optimal searches must only exit when the 
path is the first removed from the agenda (step 1,2). 
 

Search Algorithm Properties Required Parameters What is does with the 
agenda in step 4. 



Search and RBS Notes

Breadth-First Search 

Uninformed, Non-
optimal (Exception:  
Optimal only if you 
are counting total 
path length), 
Complete 

 

Add all new paths to 
the BACK of the 
agenda, like a queue 
(FIFO) 

Depth-First Search 
Uninformed, 
Non-optimal, 
Incomplete 

 

Add all new paths to 
the FRONT of the 
agenda, like a stack 
(FILO) 

Best-First Search 

Depending on 
definition of f(x) 
 
If f(x) = h(x) 
(estimated distance 
to goal) then likely 
not optimal, and 
potentially 
incomplete. 
 
However, A* is a 
type of best First 
search that is 
complete and optimal 
because of its choice 
of f(x) which 
combines g(x) and h
(x) (see below) 

f(x) to sort the entire 
agenda by. 

Keep entire agenda 
sorted by f(x) 

n-Best-First Non-optimal, 
Incomplete 

f(x) to sort the entire 
agenda by.  n = the 
maximum size of the 
agenda 

Keep entire agenda 
sorted by f(x) and 
only keep the  top n. 

Hill Climbing 

Non-optimal, 
Incomplete 
Like DFS with a 
heuristic 

f(x) to sort the newly 
added path by. 

1. Keep only newly 
added paths sorted 
by f(x) 
2. Add sorted new 
paths to the FRONT 
of agenda 
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Beam Search 

Like BFS but expand 
nodes in f(x) order. 
 
Incomplete for small 
k;  Complete and like 
BFS for k = infinity.   
 
Non-optimal 
 
When k = 1, Beam 
search is analogous 
to Hill Climbing 
without backtracking. 

1. the beam width k 
2. f(x) to sort the top 
paths by. 

1. Keep only k-top 
paths that are of 
length n.   (So keep a 
sorted list of paths 
for every path length) 
2. Keep only top-k 
paths as sorted by f
(x) 
 

British Museum 
Brutally exhaustive, 
Uninformed, 
Complete 

None 

Most likely 
implemented using a 
breadth-first 
enumeration of all 
paths  

Branch & Bound Optimal, 

g(x) = c(s, x) = the 
cost of path from s to 
node x. 
f(x) = g(x) + 0 

Sort paths by f(x) 

A* w/o extended list  
 
(or B&B w/o 
extended list + 
admissible heuristic) 

Optimal if h is 
admissible 

f(x) = g(x) + h(x,g) 
h(x,g) is the estimate 
of the cost from x to 
g. 
 
h(x) must be an 
admissible heuristic 

Sort paths by f(x)  
 

A* w extended list Optimal if h is 
consistent 

f(x) = g(x) + h(x) 
 
h(x) must be a 
consistent heuristic 

Sort paths by f(x)  

 
NOTE: A* with extended list and a non-consistent heuristic may be non-optimal!! 
 
Definitions: 
 
f(x) is the total cost of the path that your algorithm uses to rank paths. 
g(x) is the cost of the path so far. 
h(x) is the (under)estimate of the remaining cost to the goal g node. 
f(x) = g(x) + h(x) 
c(x, y) is the actual cost to go from node x to node y. 
 
Admissible Heuristic: 

●     For all nodes x in Graph,  h(x) <= c(n, g)
●     i.e. the heuristic is an underestimate of the actual cost/distance to the goal.

 
Consistent Heuristic: 
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●     For edges in an undirected graph, where m is connected to n.  
�❍     |h(m) - h(n)| <= c(m, n)

●     For edges in a directed graph   n is a descendent of m  or m -> n
�❍     h(m) - h(n) <= c(m,n)

●     You can verify consistency by checking each edge and see if difference between h 
values on an edge <= the actual edge cost. 

 
Consistency implies Admissibility 
    If you can verify consistency, then the heuristic must be admissible. 
But Admissibility does not imply Consistency!! 
 
You can make an admissible heuristic consistent by using the Pathmax algorithm: 
  
Pathmax in a nut shell:  When you are extending nodes.  If you find an edge that is not 
consistent, i.e. h(m) - h(n) > c(m,n);  make it consistent by setting the end h(n) heuristic 
value to h(m).  Hence the difference becomes 0, which is always <= c(m,n) and consistent. 
 
Short explanation on why Admissibility must be true for A* to be optimal: 
 
Let C* is the actual cost of the optimal path from s to g. 
 
A* search always extend paths in order of increasing f(x), where f(x) = g(x)+h(x) 
You can think of A* expanding paths on a fringe.  Once it has extended some path of value f(x) 
we are guaranteed that it has seen all paths lower than f(x). 
 
If h(x) is admissible, (i.e. h(x) is an underestimate of the actual path cost to node g) then we 
know that any partial path leading to the optimal path solution must have f(x) <= C*. 
 
   f(x) = g(x) + h(x) <= C* 
 
So as we expand the fringe, we are guaranteed to extend through all partial paths leading to 
the optimal path C* 
 
However If h(x) is an overestimate, then optimality may not be guaranteed;  
Because there may be a partial paths that lead to the optimal path where: 
 
   f(x) = g(x) + h(x) > C* 
 
Because of the fringe property, such a partial paths will be visited after we visit any path with 
cost C*.   So we will end up by either by-passing the optimal solution and/or mistaken a non-
optimal path as the solution. 
 
Consistency ensures that f(x) is always non-decreasing.   That is if 
p_1, p_2, p_3...p_n are partial paths leading to the optimal path, a consistent heuristic 
ensures that f(p_1) <= f(p_2) <=....<= f(p_n).    This strictly non-decreasing property or 
monotonicity, ensures that once a node has been extended it is the absolute best f(x) path 
out of that node; it is safe to not visit that node again.    
 
How Different Heuristics in A* affect performance 
 
General rule: More closely h(x) approximates the actual cost to the goal the faster A* will 
find the solution (or A* will do less work extending paths). 
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8 5 1 

4 X 2 

6 7 3 

X 1 2 

3 4 5 

6 7 8 

Example:  
Consider the 8 square game (source AIMA):  
Solve the 8 square puzzle by sliding squares horizontally or vertically until they are in 
numerical order.   Use A* to find the shortest number of legal moves to get from the starting 
configuration (s) to the goal game configuration (g). 
 
This is a possible start state (s) 

 
This is the goal state (g) 

 
Intermediate states are generated by moving a square left, right, up or down into a free blank 
square. 
 
Admissible Heuristic h1(x):  Number of Misplacements - the number of squares that are not in 
the correct position.   For our example h1(s,g) = 8.    Since all except for 6 and 7 are in the 
wrong positions. 
 
Admissible Heuristic h2(x):  Manhattan distance - number of moves needed to put each 
square in the right position.  For our example h2(s,g) = 4 + 2 + 1 + 1 + 2 + 2 + 0 + 0 + 3 = 
15 
 
Both Heuristics are admissible because actual number of moves to get individual squares in 
the correct positions will always be more (or equal). 
 
Number of nodes extended in A* at depth 24 
 
Using h1:   39.1 k 
Using h2:     1.6 k  (faster!) 
 
Conclusion, because h2 (Manhattan distance) is a closer approximation to actual number of 
moves needed, using it causes A* to do less work, and converge to the optimal solution faster. 
 

https://docs.google.com/Doc?tab=edit&dr=true&id=dhqhm2bq_105f7zbgtfg
https://docs.google.com/abuse?id=0AbO0KikZO04vZGhxaG0yYnFfMTA1Zjd6Ymd0Zmc
https://docs.google.com/abuse?id=0AbO0KikZO04vZGhxaG0yYnFfMTA1Zjd6Ymd0Zmc
https://docs.google.com/
https://docs.google.com/
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