
Problem Set 5 

General 
This is the last problem set in 6.034!  

To work on this problem set, you will need to get the code. 

•	 You will need to download and install an additional software package called 
Orange for the second part of the lab. In the past, Orange has not worked with 
Python 2.6. The new download appears to now require Python 2.6. Please download 
Orange first so that you get the problems worked out early. If you have downloaded and 
installed it, you should be able to run orange_for_6034.py and get the Orange version 
number. Once you've filled in the boosting part, you should be able to run lab5.py, and 
see the output of several classifiers on the vampire dataset. If you get errors, email us.  

•	 Orange is available for Linux (Ubuntu), Windows, and OS X (and we have successfully 
tested this lab on these platforms). Also, if you are working on Mac OS X, be sure that 
you have Numpy installed. 

•	 For Ubuntu users: Please follow the install instruction here (see section on Linux). Note: 
just running apt-get orange on Ubuntu will *NOT* install orange but a completely 
different software package! 

•	 ADVICE: If you can't get orange to work directly on your machine, try working on 
*Athena instead. It may not be a wise use of your time trying to get the Orange software to 
work on your machine, as it is only needed for half of lab 5. If orange works right out of 
the box great, but if it doesn't then follow the *Athena instructions to do the lab.  

•	 To check that your Orange is properly installed, run:  

python orange_for_6034.py 

and you should get a version string and no errors. 

•	 The built in Python 2.5 seems to work okay with Orange on Linux.  

To work on this lab on *Athena you'll need to:  

1.	 If you use bash: Setup your environment to pick up the class installation of Orange by 
adding the following:  

*Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

http://www.ailab.si/orange/
http://web.mit.edu/6.034/www/labs/orange/
http://sourceforge.net/projects/numpy/files/NumPy/1.3.0/numpy-1.3.0-py2.6-macosx10.5.dmg/download
http://www.ailab.si/orange/nightly_builds.html#linux


export
LD_LIBRARY_PATH=/afs/athena.mit.edu/course/6/6.034/lib/python2.5/dist-
packages/orange:$LD_LIBRARY_PATH 

to your .bashrc.mine file. If you are using tcsh or csh run:  

setenv LD_LIBRARY_PATH 

/afs/athena.mit.edu/course/6/6.034/lib/python2.5/dist
-
packages/orange:$LD_LIBRARY_PATH 


instead. You may omit :$LD_LIBRARY_PATH if you get complaints about it not being set. 
The above settings tell python where to look for shared libraries required for running 
Orange. NOTE: If you don't know what the shell you are running, type "echo $SHELL".  

2.	 Log into linux.mit.edu: ssh -X <user> 
3.	 For your convenience, we've provided a script, run-orange-gui.sh that will run the 

Orange GUI. Note that some Orange Widgets (like ROC charting) may 
not appear in GUI in the *Athena version. Don't worry, you won't need the GUI to answer 
the questions for this lab. 

Your answers for the problem set belong in the main file lab5.py, as well as neural_net.py
and boost.py. 

Neural Nets 
In this part of Lab 5, you are to complete the API for a Neural Net. Then afterwards, you are to 
construct various neural nets using the API to solve abstract learning problems.  

Completing the implementation  

We have provided you a skeleton of the Neural Net in neural_net.py, you are to complete the 
unimplemented methods.  

The three classes, Input, PerformanceElem, and Neuron all have incomplete implementation of 
the following two functions:  

def output(self)
def dOutDX(self,elem) 

output(self) produces the output of each of these elements.  

dOutDx(self, elem) generates the value of the partial derivative, given a weight element. Your 
first task is to fill in all 6 functions to complete the API.  

*Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.



   

The output functions for these three elements are the same as defined in class. Recall that the 
output for a neuron is computed using the sigmoid decision function:  

s(z) = 1.0 / (1.0 + e**(-z)) 

Where z is the sum of the products of it's weights and inputs.  

The output of a performance function is similarly standard:  

p = -0.5 * (d - o) ** 2 

Now on to the derivatives:  

Recall, neural nets update a given weight by computing the partial derivative of the performance 
function with respect to that weight. The formula we have used in class is as follows:  

weight[i] = weight[i] + rate * dP / dweight[i] 

In our code this is represented as (see def train()) 


w.set_next_value( w.get_value() + rate * network.performance.dOutdX(w) ) 


The element passed to the dOutdX function is always a weight. Namely it is the weight that we 
are doing the partial over. Your job is to figure out how to define dOutdX() in terms of 
recursively calling dOutdX() or output() over the inputs + weights of a network element.  

For example, consider the Performance element P, P.dOutdX(w) could be defined in the 
following recursive fashion: 

dP/d(w) = dP/do * do/dw # applying the chain rule
= (d-o) * o.dOutdX(w) 

Here o, is the output of the Neuron that is directly connected to P.  

For Neuron units, there would be more cases to consider. Namely, 1) The termination case where 
the weight being differentiated over is one of the (direct) weights of the current neuron. 2) The 
recursive case where the weight is not one that is directly connected (but is a descendant weight).  

This implementation models the process of computing the chain of derivatives recursively. This 
top-down approach works from the output layer towards the input layers. This is in contrast to 
the more conventional approach (taught in class) where you computed a per-node little-delta, and 
then recursively computed the weight updates bottom-up, from input towards output layers.  

If you are confused about how the top-down recursive chaining of derivatives work, first review 
the neural net notes. If you are still confused, ask the TAs for hints and clarifications.  

Be sure to use the sigmoid and ds/dz functions as discussed in class  



o = s(z) = 1.0 / (1.0 + e**(-z))
ds(o)/dz = s(z) * (1 - s(z)) 

The performance function and its derivative as discussed in class  

P(o) = -0.5 (d - o)**2
dP(o)/dx = (d - o) 

About the API Classes 

Most of the classes in the Neural Network inherit from the following two abstract classes:  

ValuedElement 

This interface class allows an element to have a settable value. Input (e.g. i1, i2) and Weight 
(e.g. w1A, wAB) are subclasses of ValueElement 

Elements that are subclassed all have these methods:  

• set_value(self,val) - set the value of the element  
• get_value(self) - get the value of the element  
• get_name(self) - get the name of the element  

DifferentiableElement 

This abstract class defines the interface for elements that have outputs and are involved in partial 
derivatives. 

• output(self): returns the output of this element  
• dOutdX(self,elem): returns the partial derivative with respect to another element  

Inputs, Neurons, and PerformanceElem are the three subclasses that implement 
DifferentiableElements. You will have to complete the interface for these classes. 

Weight(ValuedElement) 

Represents update-able weights in the network. It has in addition to ValueElement functions:  

• set_next_value(self,val): which sets the next weight value in self.next_value  
• update(self): which sets the current weight to the value stored in self.next_value  

Both methods are used for the training algorithm itself and you will not need them in your 
implementation.  

Input(DifferentiableElement, ValuedElement) 



Represents inputs to the network. These may represent variable inputs as well as fixed inputs (i.e. 
threshold inputs) that are always set to -1. output() of Input units should simply return the 
value they are set to during training or testing.  

dOutdX(self, elem) of an Input unit should return 0, since there are no weights connect 
directly into inputs. 

Neuron(DifferentiableElement) 

Represents the actual neurons in the neural net. The definitions for output and dOutdX already 
contains some code. Namely, we've implemented a value caching mechanism to speed up the 
training / testing process. So instead of implementing output and dOutdx directly you should 
instead implement:  

• compute_output(self): 
• compute_doutdx(self,elem): 

PerformanceElem(DifferentiableElement) 

Represents a Performance Element that allows you to set the desired output.  

• set_desired which sets the desired_output. 

The desired output is set during training. You will not need it for your implementation.  

To better understand back-propagation, you should take a look at the methods train and test in 
neural_network.py to see how everything is put together. 

Unit Testing 

Once you've completed the missing functions, we have provided a python script 
neural_net_tester.py to help you unit test. You will need to pass the tests in this unit tester 
before you can move on to the next parts.  

To check if your implementation works, run:  

python neural_net_tester.py simple 

This makes sure that your code works and can learn basic functions such as AND and OR.  

Building Neural Nets  

Once you have finished implementing the Neural Net API, you will be tasked to build three 
networks to learn various abstract data sets.  

Here is an example of how to to construct a basic neural network:  



def make_neural_net_basic():
"""Returns a 1 neuron network with 2 variable inputs, and 1 fixed

input."""
i0 = Input('i0',-1.0) # this input is immutable
i1 = Input('i1',0.0)
i2 = Input('i2',0.0) 

w1A = Weight('w1A',1)

w2A = Weight('w2A',1)

wA = Weight('wA', 1) 


# the inputs must be in the same order as their associated weights

A = Neuron('A', [i1,i2,i0], [w1A,w2A,wA])

P = PerformanceElem(A, 0.0) 


# Package all the components into a network

# First list the PerformanceElem P 

# Then list all neurons afterwards 

net = Network(P,[A]) 


return net 

Naming conventions 

IMPORTANT: Be sure to use the following naming convention when creating elements for your 
networks: 

Inputs: 

•	 Format: 'i' + input_number 
•	 Conventions: 

o	 Start numbering from 1.  
o	 Use the same i0 for all the fixed -1 inputs 

•	 Examples: 'i1', i2. 

Weights: 

•	 Format 'w' + from_identifier + '.' + to_identifier 
•	 Examples:  

o	 w1A for weight from Input i1 to Neuron A 
o	 wBC for weight from Neuron B to Neuron C. 

Neurons: 

•	 Format: alphabet_letter 
•	 Convention: Assign neuron names in order of distance to the inputs.  
•	 Example: A is the neuron closest to the inputs, and on the left-most (or top-most) side of 

the net. 
•	 For ties, order neurons from left to right or top to bottom (depending on how you draw 

orient your network). 



Building a 2-layer Neural Net  

Now use the Neural Net API you've just completed and tested to create a two layer network that 
looks like the following. 

Fill your answer in the function stub:  
def make_neural_net_two_layer
in neural_net.py. 

Your 2-layer neural net should now be able to learn slightly harder datasets, such as the classic 
non-linearly separable examples such as NOT-EQUAL (XOR), and EQUAL.  

When initializing the weights of the network, you should use random weights. To get 
deterministic random initial weights so that tests are reproducible you should first seed the 
random number generator, and then generate the random weights.  

seed_random() 

wt = random_weight()
...use wt... 
wt2 = random_weight()
...use wt2... 

Note: the function random_weight() in neural_net.py uses the python function 
random.randrange(-1,1) to compute initial weights. This function generates values: -1, 0, 1 
(randomly). While this may seem like a mistake but what we've found empirically is that this 
actually performs better than using random.uniform(-1, 1). Be our guest and play around with the 



     
  
     

 
 

 
 

random_weight function. You'll find that Neural Nets can be quite sensitive to initialization 
weight settings. Recall what happens if you set all weights to the same value? 

To test your completed network run:  

python neural_net_tester.py two_layer 

Your network should learn and classify all the datasets in the 
neural_net_data.harder_data_set with 100% accuracy. 

Designing For More Challenging Datasets 

Now it's your turn to design the network. We want to be able to classify more complex data sets.  

Specifically we want you to design a new network that should theoretically be able to learn and 
classify the following datasets:  

1. The letter-L. 

4 + -
3 + -
2 + -
1 + - - - -
0 - + + + + 
0 1 2 3 4 

2. This moat-like shape:  

4 - - - - -
3 - -
2 - + -
1 - -
0 - - - - -
0 1 2 3 4 

3. This patchy shape: 

4 - - + + 
3 - - + + 
2 
1 + + - -
0 + + - -
0 1 2 3 4 

We claim that a network architecture containing 5 neuron nodes or less can fully learn and 
classify all three shapes. In fact we required it!  

Construct a new network in: 

def make_neural_net_challenging 



that can (theoretically) perfectly learn and classify all three datasets.  

To test your network on the first 2 of these shapes, run  

python neural_net_tester.py challenging 

To pass our tests, your network must get 100% accuracy within 10000 iterations.  

Now try your architecture on the third dataset patchy. Run: 

python neural_net_tester.py patchy 

Depending on your architecture and your initial weights, your network may either easily learn 
patchy or get stuck in a local maxima. Does your network completely learn the dataset within 
10000 iterations? If not, take look at the weights output at the end of the 10000 iterations. Plot 
the weights in terms of a linear function on a 2D graph. Does the boundaries tell you why there 
might be a local maxima? 

Manually Setting Weights 

You can have your network learn the dataset patchy perfectly and very quickly if the proper 
weights are set. 

You can use either of these strategies to determine the proper weights.  

1.	 You can experimentally determine the right weights by running your network until it 
perfectly learns the dataset. You will probably need to increase the max-iterations 
parameter, or playing around with different initial weight settings.  

2.	 You can try to solve for the weights analytically. This is a good chance to put into 

practice the methods for solving network weights you learned in tutorial.  


3.	 In either case, we want you to find preset weights to the same network that you built in 
the last part. Your new weight-preset network should be able to learn the patchy problem 
with only 1000 additional iterations of training.  

After you've found the optimal weights, fill in:  

def make_neural_net_with_weights 

To test, run: 

python neural_net_tester.py weights 

If everything tests with an accuracy of 1.0. Then you've completed the Neural Networks portion 
of lab5. Congrats! 

Now on to Boosting! 



Boosting 
You're still trying to use AI to predict the votes of politicians. ID-Trees were great, but you've 
heard about these other magnificent learning algorithms like SVMs and Boosting. Boosting 
sounds easier to implement and had a pretty good reputation, so you decide to start with that.  

To make sure that you interpret the results without letting your political preconceptions get in the 
way, you dig up some old data to work with: in particular, the data from the 4th House of 
Representatives, which met from 1796 to 1797. (According to the records on voteview.com, this 
is when the two-party system first emerged, with the two parties being designated "Federalists" 
and "Republicans".) 

You experiment with that data before going on to the 2007-2008 data, finding that Congressmen 
in 1796 were much more clear about what they were voting on than in 2008.  

The framework for a boosting classifier can be found in boost.py. You need to finish coding it, 
and then use it to learn some classifiers and answer a few questions.  

The following resources will be helpful:  

•	 The documentation for the boosting code, which you can find embedded in boost.py in 
the documentation strings.  

•	 The Shapire paper on boosting, or the notes that summarize it.  
•	 The Lab 4 writeup, if you need to refer to how data_reader.py represents legislators 

and votes. 

A (clever|cheap) trick 

The boosting code uses a trick that means it only has to try half the number of base classifiers.  

It turns out that AdaBoost does not really care which side of its base classifier is +1 and which 
side is -1. If you choose a classifier that is the opposite of the best classifier -- it returns -1 for 
most points that should be +1, and returns +1 for most points that should be -1, and therefore has 
a high error rate -- it works the same as if you had chosen the negation of that classifier, which is 
the best classifier.  

If the data reweighting step is implemented correctly, it will produce the same weights given a 
classifier or its opposite. Also, a classifier with a high error rate will end up with a negative alpha 
value, so that in the final "vote" of classifiers it will act like its opposite. So the important thing 
about a classifier isn't that its error rate is low -- it's that the error rate is far from 1/2. 

In the boosting code, we take advantage of this. We include only classifiers that output +1 for 
voting YES on a particular motion, or +1 for voting NO on a particular motion, and as the "best 
classifier" we choose the classifier whose error rate is farthest from 1/2. If the error rate is high, 
then the result will act like a classifier that outputs +1 for "voting NO or abstaining", or +1 for 

http://www.voteview.com/


"voting YES or abstaining", respectively. This means we don't have to include these classifiers in 
the base classifier list, speeding up the algorithm by a factor of 2.  

Completing the code  

Here are the parts that you need to complete:  

•	 In the BoostClassifier class in boost.py, the update_weights method is undefined. 
You need to define this method so that it changes the data weights in the way prescribed 
by the AdaBoost algorithm. There are two ways of implementing this update which 
happen to be mathematically equivalent.  

•	 In the BoostClassifier class, the classify method is also undefined. Define it so that 
you can use a trained BoostClassifier as a classifier, outputting +1 or -1 based on the 
weighted results of its base classifiers. Complete the very similar orange_classify 
method as well.  

•	 In lab5.py, the most_misclassified function is undefined. You will need to define it 
to answer the questions. 

Remember to use the supplied legislator_info(datum) to output your list of the most-
misclassified data points! 

Questions 

Answer the two questions republican_newspaper_vote and republican_sunset_vote in 
lab5.py. 

When you are asked how a particular political party would vote on a particular motion, disregard 
the possibility of abstaining. If your classifier results indicate that the party wouldn't vote NO, 
consider that an indication that the party would vote YES.  

Orange you glad someone else implemented these? 
First things first: Have you installed Orange yet? 

Now that you've installed Orange, when you run lab5.py, does it complain about Orange, or does 
it show you the outputs of some classifiers on vampire data?  

Getting familiar with the Orange GUI  

This part is to get you familiar with the Orange GUI to do a little machine learning without doing 
any programming. We've given you some data files (vampires.tab, H004.tab, adult.tab, 
titanic.tab, breast-cancer.tab, etc.) that you can play with. Try making something like the 
following: 



Then take a look at the performance, and look at the actual predictions.  

Using Orange from Python 

We have given you a function called describe_and_classify that trains a bunch of classifiers 
that Orange provides. Some of them will be more familiar than others.  

First it trains each classifier on the data, shows its output on each data point from the training 
data, and shows the accuracy on the training data. You know from class that the accuracy on the 
training data should be 1 for these classifiers. It is less than one because each classifier comes 
with built-in regularization to help prevent overtraining. That's what the pruning is for the 
decision tree, for example. We didn't specify regularization parameters to most of the learners 
because they have fine defaults. You can read more about them in the Orange documentation.  

You'll notice that we do one extra thing with the decision tree. We print it out. For most 
classifiers, their internal representations are hard for humans to read, but the decision tree's 
internal representation can be very useful in getting to know your data.  

Then describe_and_classify passes the untrained learners, without having seen the data, to 
cross-validation. Cross-validation hides part of the training data, trains the learner on the rest, 
and then tests it on the hidden part. To avoid accidentally picking just one terrible subset of the 
data to hide (an irreproducible subset), it divides the data evenly into some number of folds, 

© University of Ljubljana Artificial Intelligence Laboratory. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse


successively tests by hiding each fold in turn, and averages over the results. You will find with 
cross-validation that the classifiers do much better on identifying political parties than they do on 
vampires. That's because the vampire dataset has so few examples, with so little redundancy, that 
if you take away one example, it is very likely to remove the information you actually need in 
order to classify that example. 

To ensure that you've gotten the right idea from each part of describe_and_classify, there are 
six questions just below the function. 

Boosting with Orange  

You may be able to do better by using AdaBoost over your Orange classifiers than you could do 
with any of those Orange classifiers by themselves. Then again, you may do worse. That 
AdaBoost "doesn't tend to overfit" is a somewhat conditional statement that depends a lot on the 
particular classifiers that boosting gets its pick of. If some of the underlying classifiers tend to 
overfit, then boosting will greedily choose them first, and it will be stuck with those choices for 
testing. 

We have set up a learner that uses the BoostClassifier from the first part, but its underlying 
classifiers are the Orange classifiers we were just looking at. When you combine classifiers in 
this way, you create what's called an "ensemble classifier". You will notice, as you run this new 
classifier on the various data sets we've provided, that the ensemble frequently performs worse in 
cross-validation than some (or most) of its underlying classifiers.  

Your job is to find a set of classifiers for the ensemble that get at least 74% accuracy on the 
breast-cancer dataset. You may use any subset of the classifiers we've provided. Put the short 
names of your classifiers into the list classifiers_for_best_ensemble. There will be 
honorable mention in class for the best ensemble. Classifier performance appears to be 
architecture dependent, so you might be able to get to 74% with just one classifier on your 
machine, but that won't be enough on the server -- in this case, try to get even better performance 
at home. If you are proud of the way that you went about choosing the best ensemble, let us 
know to look at your code carefully, and there may be another honorable mention for that.  

Bonus! 

We think there may be a problem with the code somewhere, but we don't know quite where. If 
you run the ensemble boosting with the original set of learners (one of each) then you get terrible 
results for the H109 data set. Can you figure out why? 

Errata 
Neural Nets 

If you are having problems with getting your network to convergence on certain problems, try 
the following:  



1.	 Change your random weight function to use random.randrange(-1,1) instead of 
random.uniform(-1,1). We've found that the former produced weights that are more 
conducive to network convergence. 

2.	 Order your weight initialization (i.e. calls to random_weight()) from the bottom-most 
weights to the top-most weights in you network. While this ordering theoretically 
irrelevant, we've found that this ordering worked well in practice (in conjunction with 1 
above). NN are unfortunately quite sensitive to initial weight settings.  

3.	 Play around with the seed_random function to try different starting random seeds. 

Though seeding the random function with 0 is what worked for us.  


4.	 If none of these work, try setting weights that are close to what you want in terms of the 
final expected solution. 

Boosting and Orange 

It turns out that different architectures yield different results from describe_and_classify on 
the vampire and H004 datasets. Some folks have perfectly reasonable answers to the short 
answer part given the output on their machine, but do not pass the tests with those answers.  

For the same reason, some folks are getting 74% on their home computers very easily. The 
question was intended to set a lower limit which was larger than any of the classifiers by itself. If 
you're getting 74, but the ensemble classifier test is failing, you'll need to try harder. You'll want 
to use some subset of the classifiers. Think about why the decision tree isn't a good choice as a 
base classifier for boosting. 



MIT OpenCourseWare
http://ocw.mit.edu 

6.034 Artificial Intelligence
Fall 2010

 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



