WKB Approximation Applied to Tunneling
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Note, we use t(z) and r(x) in ¥yy, but they can only take the WKB AWAY from the classical turning
point.

Now we assume r;; = 0. This is safe as long as the barrier remains relatively thick (so the reflected wave
has small amplitude).

Now consider the coundary condition at x = 0:
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, where ((z) =/ —(V(z) — E).

Keep in mind that ¥;;(x) is the approximate eigenstate only (e.g at « = 0, U;; — oo which is clearly
unphysical).
Now consider the boundary condition for continuity at W:
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Then

This solution has the form 7' = Ae~2°(*). In general tunneling barriers will have a dependence of

T =2 e VoW,

which falls out of the derivation above if V(z) = ¢¢, 0 < & < W (so the barrier height is a constant).
More complex barriers may require careful corrections to WKB to achieve quantitative agreement with

experiments.



