
6.851: Advanced Data Structures	 Spring 2010 

Lecture 22 — April 29 
Prof. Erik Demaine 

1 Overview 

Up until now, we have mainly studied how to decrease the query time, and the preprocessing time of 
our data structures. In this lecture, we will focus on maintaining the data as compactly as possible. 
Our goal will be to get as close the information theoretic optimum as possible. We will refer to 
this optimum as OPT. Note that most ”linear space” data structures we have seen are still far 
from the information theoretic optimum because they typically use O(n) words of space, whereas 
OPT usually uses O(n) bits. This strict space limitation makes it really hard to have dynamic data 
structures, so most space-efficient data structures are static. 

Here are some possible goals we can strive for: 

•	 Implicit Data Structures – Space = information-theoretic-OPT + O(1). The O(1) is there 
so that we can round up if OPT is fractional. Most implicit data structures just store some 
permation of the data: that is all we can really do. As some simple examples, we can refer to 
Heap which is a Implicit Dynamic Data Structure, and Sorted array which is static example 
of these data structures. 

•	 Succinct Data Structures – Space = OPT + o(OPT). In other words, the leading constant is 
1.	 This is the most common type of space-efficient Data Structures. 

•	 Compact Data Structures – Space = O(OPT). Note that some ”linear space” data structures 
are not actually compact because they use O(w OPT) bits. For example, suffix tree has O(n)·
words space, but its information theoretic lower bound is n bits. On the other hand, BST 
can be seen as a Compact Data Structure. 

1.1 mini-survey 

•	 Implicit Dynamic Seach Tree – In 2003, Franceschini and Grossi [1] developed an implicty 
dynamic search tree which supports insert, delete, and predecessor in O(log(n)) time worst 
case. 

�	 � � lg (u) � � � 
u n	 u + O(n(lg lg n)2 •	 Succinct Dictionary – use lg 
n + O lg lg lg u bits [2] or lg 

n lg n ) bits [6] , and 
support O(1) membership queries; u is the size of the universe from which the n elements are 
drawn. 

Succinct Binary Tries – The number of possible binary tries with n nodes is the nth Catalan •	
u 

number, Cn = (n)/(n + 1) ≈ 4n . Thus, OPT ≈ log(4n) = 2n. We note that this can be 
derived from a recursion formula based on the sizes of the left and right subtrees of the root. 
In this lecture, we will show how to use 2n + o(n) bits of space. We will be able to find the 

1




2 

left child, the right child, and the parent in O(1) time. We will also give some intuition for 
how to answer subtree-size queries in O(1) time. Subtree size is important because it allows 
us to keep track of the rank of the node we are at. 

Almost Succinct k-ary trie – The number of such tries is Ck = 
�

kn+1 � 
/(kn+1) ≈ 2(log(k)+log(e))n . 

n
•	 n 

Thus, OPT = (log(k) + log(e))n. The best known data structures was developed by Benoit 
et al. [3]. It uses (�log(k)� + �log(e)�)n + o(n) + O(loglog(k)) bits . This representation 
still supports the following queries in O(1) time: find child with label i, find parent, and find 
subtree size. 

Succinct Rooted Ordered Trees – These are different from tries because there can be no absent • 
children. The number of possible trees is Cn, so OPT = 2n. A query can ask us to find the 
ith child of a node, the parent of a node, or the subtree size of a node. Clark and Munro [4] 
gave a succinct data structure which uses 2n + o(n) space, and answers queries in constant 
time. 

•	 Permutation – In this data structure, we are given a permutation π of n items, and the 
queries are of the form πk(i). Munro et. al. present a data structure with constant query 
time and space (1 + �)n log(n) + O(1) bits in [7]. They also obtain a succinct data structure 
with �log n!� + o(n) bits and query time O(log n/ log log n). 

Level Order Representation of Binary Tries 

One of the central techniques for Succinctly representing tries is called the Level Ordered Repre

sentation. We will go through the nodes in level order, and for each one, we will write down 2 bits. 
The first bit represents whether that node has a left child (1 if it does, 0 if it doesn’t), and the 
second represents whether it has a right child. In the example in Figure 1, we would go through the 
nodes in the order A,B,C,D,E,F,G, and we would end up with the bit-string B = 11011101000000. 

2




Figure 1: A Binary Trie 

external nodes: Another way of thinking of the level order representation is to add an external 

node wherever we have a missing child. Now, we will go through the nodes (including the external 
ones) in level order, and write 1 if the node is internal, 0 if it is external. It turns out that this 
gives us the same bit-string as the representation above, except with an extra one in the front (this 
one represents the root). So in figure 1, we would have B = 111011101000000. 

2.1 Navigating: 

It may seem as though this representation will be very hard to navigate, but the following theorem 
makes it much easier. 

Theorem: The left and right children of the ith internal node are at positions 2i and 2i+ 1 in the 
array B. 

Proof: Let D be the ith internal node. That is, let D be the ith 1 in our array. Suppose that it is 
at position i + j. In other words, say that there are j 0’s before it. There are i − 1 internal nodes 
before D, so if we include external nodes, these (i− 1) nodes have a total of 2(i− 1) children, they 
all appear before the left child of D in the string. Thus, there are at most 2(i − 1) possible nodes 
that could go between D and left(D). But this includes the (i− 1) internal nodes before D, and the 
j external nodes before D, so there are 2i− 2− (i− 1)− j = i− j − 1 nodes between D and left(D). 
Thus, left(D) is at position 1 + (i + j) + (i − j − 1) = 2i. Right(D) is at position 2i + 1 

We can also prove it in this simpler way. There are i− 1 internal nodes before D each of which has 
two children. This way we count each node except root exactly once because each node has exactly 
one parent. So there are 2(i − 1) + 1 nodes before the left child of root (plus one is for root). 

3




3 Rank and Select 

Say that we could support the following operations on an n-bit string in O(1) time, with o(n) extra 
space: 

• rank(i) = number of 1’s at or before position i 

• select(j) = position of jth one. 

This would give us the desired representation of the binary trie. The space requirement would be 
2n for the level-order representation, and o(n) space for rank/select. Here is how we would support 
queries: 

• left-child(i) = 2rank(i) 

• right-child(i) = 2rank(i) + 1 

• parent(i) = select(�i/2�) 

3.1 Rank 

This algorithm was developed by Jacobsen, in 1989 [5]. It uses many of the same ideas as RMQ. 
The basic idea is that we use a constant number of recursions until we get down to sub-problems 
of size k = log(n)/2. Note that there are only 2k = 

√
n possible strings of size k, so we will 

just store a lookup table for all possible bit strings of size k. For each such string we have k = 
O(log(n)) possible queries, and it takes log(k) bits to store the solution of each query (the rank of 
that element). Nonetheless, this is still only O(2k k log k) = O(

√
n log(n) log log(n)) = o(n) bits. · 

First Attempt: We will split the bit string into n/ log2(n) chunks of size log2(n). To find rank(i), 
we need to find (rank of i in its chunk) + (number of 1’s in all preceding chunks). We will show how 
to find rank(i) within a chunk. But we also need, for each chunk, the total number of 1’s among 
all of the preceding chunks. There are n/ log2(n) chunks, and for each of them we have to store a 
number (with log(n) bits). So we can store all the data using O(n/ log n) bits which we can afford. 

Second Attempt: Now we have chunks of size log2 n. The solution is to use one more level of 
recursion. We will split into 2n/ log(n) subchunks of size log(n)/2. The rank within the subchunks 
can be found using the lookup table. The problem is to find the number of one bits in the preceding 
subchunks. Note that we have 2n/ log n subchunks. But the number of ones in the preceding 
subchunks is not more than log2 n because we are within a chunk of size log2 n. So we can store 
each of these 2n/ log n numbers by O(log log(n)) bits. So the total space of this part is o(n) as well. 

3.2 Select 

This algorithm was developed by Clark and Munro in 1996 [4]. Select is similar to rank, although 
more complicated. This time, since we are trying to find the position of the ith one, we will break 
our array up into chunks with equal amounts of ones, as opposed to chunks of equal size. 

Step 1: First, we will pick every (log(n)loglog(n))th 1 to be a special one. We will store the index of 
every special one. Storing an index takes log(n) bits, so this will take O(nlog(n)/(log(n)loglog(n))) 
= O(n/loglog(n)) = o(n). Now, we need to restrict our attention to a single chunk: a sequence of 

4




Figure 2: A Rooted Ordered Tree That Represents the Trie in Figure 1 

bits between two special ones (note that there are O(n/(log(n)loglog(n))) chunks). Let r be the 
total number of bits in a chunk. If r > log2(n), we will go to step 2. If r ≤ log2(n), we will go to 
step 3. 

Step 2: There are at most O(n/log2(n)) chunks of size greater than log2(n). Thus, we can afford 
to just brute force the problem by storing the index (in our bit-string) of every 1 in the chunk. 
There are log(n)loglog(n) ones, and storing each index takes O(log(n)) space, so the total space, 
over all of these large chunks, is O(nlog(n)loglog(n)log(n)/log2 (n)) = O(n/loglog(n)) = o(n). 

Step 3: In this case we recurse again. This time, within a chunk, we pick every (loglog(n))2 th 
one to be a mini-special one. We then split up into mini-chunks. If a chunk has size greater than 
(loglog(n))4 , then we brute force as in step 2. There are at most n/(loglog(n))4 such chunks, each 
one contains O((loglog(n))2 ) ones, and storing each index takes O(log(log2 (n))) = O(loglog(n)) 
bits. Thus, the overall number of bits will be O(n(loglog(n))3/(loglog(n))4 ) = O(n/loglog(n)) = 
o(n) space. If a chunk is smaller than (loglog(n))4 , then we recurse one last time. But note that 
(loglog(n))4 is tiny, so we can afford to store a lookup table for all possible chunks of this size (just 
as we did in rank). Note that we can use the lookup table with o(n) space because log log4(n) is 
not more than log(n)/2. 

4 Subtree Sizes 

We have shown a Succinct binary trie which allows us to find left children, right children, and 
parents. But we would still like to find sub-tree size in O(1) time. Level order representation does 
not work for this, because level order gives no information about depth. Thus, we will instead try 
to encode our nodes in depth first order. 

In order to do this, notice that there are Cn (catalan number) binary tries on n nodes. But there 
are also Cn rooted ordered trees on n nodes, and there are Cn balanced parentheses strings with 
n parentheses. Moreover, we will describe a bijection: binary tries rooted ordered trees ⇔ ⇔
balanced parentheses. This makes the problem much easier because we can work with balanced 
parentheses, which have a natural bit encoding: 1 for an open parentheses, 0 for a closed one. 

4.1 The Bijections 

We will use the binary trie in figure 1. To make this into a rooted ordered tree, we can think of 
rotating the trie 45 degrees counter-clockwise. Thus, the top three nodes of the tree will be the 
right spine of the trie (A,C,F). To make the tree rooted, we will add an extra root *. Now, we 
recurse into the left subtrees of A,C, and F. For A, the right spine is just B,D,G. For C, the right 
spine is just E: C’s only left child. Figure 2 shows the resulting rooted ordered tree. 

5 



Figure 3: A Balanced Parentheses String That Represents the Ordered Tree in Fiugre 2 

To go from rooted ordered trees to balanced parentheses strings, we do a DFS of the ordered tree. 
We will then put an open parentheses when we first touch a node, and then a closed parentheses 
the second time we touch it. Fig 3 contains a parentheses representation of the ordered tree in 
figure 2. 

Now, we will show how the queries are transformed by this bijection. For example, if we want to 
find the parent in our binary trie, what does this correspond to in the parentheses string? The 
bold-face is what we have in the binary trie, and under that, we will describe the corresponding 
queries from the 2 bijections. 

Node: 

Rooted Ordered Tree: Also, just a node.


Parentheses String: An open parentheses that corresponds to the first time we visited v.


Left-Child(v) 

Rooted Ordered Tree: First-Child(v)


Parentheses String: The next parentheses. If it is closed, then v has no children.


Right-Child(v): 

Rooted Ordered Tree: The next sibling of v. 

Parentheses String: The parentheses after the matching closed parentheses of v. If this is closed, v 
has no right child. 

Subtree-Size(v): 

Rooted Ordered Tree:Subtree-size(v) + Σw∈RS subtree-size(w). RS stands for the set of right siblings 
of v. 

Parentheses String: 1/2 of the distance to the matching closed parentheses. 

Parent(v): 

Rooted Ordered Tree: v’s left sibling, if it exists. Otherwise, v’s parent. 

Parentheses String: The nearest enclosing (). 

References 

[1] G. Franseschini, R.Grossi Optimal Worst-case Operations for Implicit Cache-Oblivious Search 

Trees, Prooceding of the 8th International Workshop on Algorithms and Data Structures 

6




(WADS), 114-126, 2003 

[2] A.Brodnik, I.Munro Membership in Constant Time and Almost Minimum Space, Siam J. 
Computing, 28(5): 1627-1640, 1999 

[3] D.Benoit, E.Demaine, I.Munro, R.Raman, V.Raman, S.Rao Representing Trees of Higher De

gree, Algorithmica 43(4): 275-292, 2005 

[4] D.Clark, I.Munro Eifficent Suffix Trees on Secondary Storage, SODA, 383-391, 1996. 

[5] G.Jacobson Succinct Static Data Structures, PHD.Thesis, Carnegie Mellon University, 1989. 

[6] R. Pagh: Low Redundancy in Static Dictionaries with Constant Query Time, SIAM Journal 
of Computing 31(2): 353-363 (2001). 

[7] J. Ian Munro, Rajeev Raman, Venkatesh Raman, and Satti Srinivasa Rao: Succinct Represen

tations of Permutations, ICALP (2003), LNCS 2719, pp. 345-356. 

7




MIT OpenCourseWare
http://ocw.mit.edu 

6.851 Advanced Data Structures 
Spring 2010 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

