
1

2

6.851: Advanced Data Structures Spring 2010

Lecture 20 — 22 April, 2010
Prof. Erik Demaine

Memory Hierarchies and Models of Them

So far in class, we have worked with models of computation like the word RAM or cell probe
models. These models account for communication with memory one word at a time: if we need to
read 10 words, it costs 10 units.

On modern computers, this is virtually never the case. Modern computers have a memory hier
archy to attempt to speed up memory operations. The typical levels in the memory hiearchy are:
Memory Level Size Response Time
CPU registers ≈ 100B ≈ 0.5ns
L1 Cache ≈ 64KB ≈ 1ns
L2 Cache ≈ 1MB ≈ 10ns
Main Memory ≈ 2GB ≈ 150ns
Hard Disk ≈ 1TB ≈ 10ms

It is clear that the fastest memory levels are substantially smaller than the slowest ones. Generally,
each level has a direct connection to the level immediately below it. (In addition, the faster, smaller
levels are substantially more expensive to produce, so do not expect 1GB of register space any time
soon.) Additionally, many of the levels communicate in blocks. For example, asking RAM to read
one integer will typically also transmit a “block” of nearby data. So processing the block members
costs no additional memory transfers. This issue is exacerbated when communicating with the disk:
the 10ms is dominated by the time needed to find the data (move the read head over the disk).
Modern disks are circular, spinning at 7200rpm, so once the head is in position, reading all of the
data on that “ring” is practically free.

This speaks to a need for algorithms that are designed to deal with “blocks” of data. Algorithms
that properly take advantage of the memory hiearchy will be much faster in practice; and memory
models which correctly describe the hiearchy will be more useful for analysis. We will see some
fundamental models with some associated results today.

External Memory Model

The external memory model was introduced by Aggarwal and Vitter in 1988 [1]; it is also called
the “I/O Model” or the “Disk Access Model” (DAM). The external memory model simplifies the
memory hierachy to just two levels. The CPU is connected to a fast cache of size M ; this cache in
turn is connected to a slower disk of effectively infinite size. Both cache and disk are divided into
blocks of size B. Reading and writing one block from cache to disk costs 1 unit. Operations on
blocks in RAM are free.

Clearly any algorithm from say the word RAM model with running time T (N) requires no worse

1

than T (N) memory transfers in the external memory model (at most one memory transfer per
operation). The lower bound, which is usually harder to obtain, is T (

B
N) , where we take perfect

advantage of cache locality; i.e., each block is only read/written a constant number of times.

Note that, the external memory model is a good first approximation to the slowest connection in
the memory hiearchy. For a large database, “cache” could be system RAM and “disk” could be
the hard disk. For a small simulation, “cache” might be L2 and “disk” could be system RAM.

2.1 Scanning

NClearly, scanning N items costs O(�B �) memory transfers.

2.2 Searching

Searching is accomplished with a B-Tree using a branching factor that is ΘB. Insert, delete, and
predecessor/successor searches are then handled with O(log B + 1N) memory transfers. This will
require O(log N) time in the comparision1 model.

The O(logB+1 N) bound is in fact optimal; we can see this from an information theoretic argument.
To locate a query among N items, we need log(N + 1) bits of information. Each read from cache
(one block) tells us where the query fits among B items, yielding log(B + 1) bits of information.
Thus we need at least log(N+1) or Ω(logB+1 N) memory transfers to reveal all log(N + 1) bits. log(B+1)

2.3 Sorting

In the word RAM model, a B-Tree can sort in optimal time: insert all elements and successively
delete the minimal element. The same technique yields O(N logB+1 N) (amortized) memory trans-B
fers in the external memory model, which is not optimal.

An optimal algorithm is a M -way version of mergesort. It obtains performance by solving subprob-B
lems that fit in cache, leading to a total of O(N

B log

B
M

N
B) memory transfers. This bound is actually

optimal in the comparison model [1].

2.4 Permutation

The permutation problem is: given N elements in some order and a new ordering, rearrange the
elements to appear in the new order. Naively, this takes O(N) operations: just swap each element
into its new home. It may be faster to make the key equal to the permutation ordering and then
apply the above optimal sort. This gives us a bound of O(min{N, N

B

that this result holds in the “indivisible model,” where words cannot be cut up and re-packed into

log

B
M

N
B }) (amortized). Note

other words.
1This is not the standard comparison model; here we mean that the only permissible operation on elements is to

compare them pairwise.

2

2.5 Buffer Trees

Buffer trees are the external memory priority queue. They also achieve the sorting bound if all
elements are inserted then the minimum deleted sequentially.
 1Buffer trees achieve (O B log
 B

N
B
M)

(amortized) memory transfers per operation. The operations are batched updates and delayed
queries; delete-min queries are free.

3 Cache Oblivious Model

The cache-oblivious model is a variation of the external-memory model introduced by Frigo, Leis
erson, Prokop, and Ramachandran in 1999 [10, 11]. In this model, the algorithm does not know
the block size, B, or the total memory size, M . This means that the blocking is implicit: when
the algorithm asks for a piece of data, it gets a whole block of memory. But it does not know how
much data arrived; i.e., the algorithms must function for any B and M combintaion.

For modeling assumptions, automatic block transfers are triggered by word access with an offline
optimal block replacement scheme2 . More practical schemes like LRU (Least Recently Used) or
FIFO (First In First Out) are 2-competitive with the offline optimal algorithm if the offline routine’s
cache size is only half as large. But putting a constant factor on M does not change our bounds.

Also, we will be using the “Tall Cache Assumption.” That is, even though we do not know M , we
assume that M ≥ cB for some constant c. That is, the cache is able to hold “enough” blocks.

3.1 Scanning

The bound is identical to external memory: O(�
B
N �) memory transfers.

3.2 Search Trees

A cache-oblivious variant of the B-tree [4, 5, 9] provides the INSERT, DELETE, and SEARCH operations
with OlogB+1 N (amortized) memory transfers, as in the external-memory model. The latter half
of this lecture concentrates on cache-oblivious B-Trees.

3.3 Sorting

As in the external-memory model, sorting N elements can be performed cache-obliviously using
O(
N

B log
 N
M) memory transfers [10, 7]. This algorithm uses a tall cache assumption: M = Ω(B1+�),BB

which is necessary [10, 7].
2Offline optimal here means that given the user’s sequence of memory accesses, the fewest possible number of

blocks are moved.

3

� �

3.4 Permuting

The min{} is no longer possible[10, 7], but both component bounds from the external memory
model are still valid.

3.5 Priority Queues

Again using a tall cache assumption, a priority queue can be implemented that executes the INSERT,
1 NDELETE, and DELETE-MIN operations in O B log M B (amortized) memory transfers [3, 6]. We

B

will explore the details of this data structure in the next lecture.

4 Cache Oblivious B-Trees

Now we will discuss and analyze the data structure leading to the previously stated cache-oblivious
search tree result. We will use a data structure that shares many features with the standard B-tree.
It will require modification since we do not know B, unlike in the external memory model. To start,
we will build a static structure supporting searches in O(logB+1 N) time.

4.1 Static Search Trees

First, we will construct a complete binary search tree over all N elements. To achieve the logB+1
complexity on memory transfers, the tree will be represented on disk in the van Emde Boas
layout[11]. The vEB layout is defined recursively. The tree will be split in half by height; the

1upper subtree has height 2 log N and it holds O(
√

N) elements. The top subtree in turn links to
O(sqrtN) subtrees each with O(

√
N) elements. Each of the

√
N + 1 subtrees is in turn divided up

according to the vEB layout. On disk, the upper subtree is stored first, with the bottom subtrees
laid out sequentially after it. This layout can be generalized to trees where the height is not a
power of 2 with a O(1) branching factor (≥ 2)[4].

Note that when the recursion reaches a subtree that is small enough (size less than B), we can stop.
Smaller working sets would not gain or lose anything since they would not require any additional
memory transfers.

Claim 1. Performing a search on a search tree in the van Emde Boas layout requires OlogB+1 N
memory transfers.

Proof. Consider the level of detail that “straddles” B. That is, continue cutting the tree in half
until the height of each subtree first becomes ≤ log B. At this point, the height must also be greater

1than 2 log B. Note that the size of the subtrees is at least
√

B and at most B, giving between B
and B2 elements at this “straddling” level.

In the (search) walk from root to leaf, we will access no more than 1
log N subtrees3 . Each subtree
log B

2

3The tree height is O(log N); the subtree heights are Ω(log B).

4

at this level then requires at most 2 memory transfers to access4 . Thus the entire search requires
O(4 logB N) memory transfers.

4.2 Dynamic Search Trees

Note that the following description is modeled after the work of [5], which is a simplification of [4].

4.2.1 Ordered File Maintenance

First, we will need an additional supporting data structure that solves the Ordered File Maintenance
(OFM) problem. For now, treat it as a black box; the details will be given in the next lecture.

The OFM problem involves storing N elements in an array of size O(N) with a specified ordering.
Note that this implies gaps of size O(1) are permissible. The OFM data structure then supports
INSERT (between two consecutive items) and DELETE. It accomplishes each operation by moving
elements in an interval of size O(log2 N) (amortized) via O(1) interleaved scans. One might imagine
this data structure backing the file system on a computer.

4.2.2 Back to Search Trees: Linking vEB layout and OFM

First, initialize and construct an OFM over the N keys. Recall that the OFM is backed by an array,
so we can build a complete BST on top of the OFM array. The BST has one leaf for each entry
in the OFM array, including the blank spaces. Only the leaves contain original keys; the non-leaf
nodes only contain copies. Non-leaf nodes take their value from the maximum of their two children
(empty is considered to be smaller than any other value). The BST is static since the will only
move data around within its array.

With this structure, SEARCH still requires O(logB+1 N) memory transfers. Searching now involves
checking each node’s left child in to decide whether to branch left or right; this at most doubles
the number of comparisons over a standard BST. INSERT(X) is more complex. The operations are
as follows: 1) search for X to find its predecessor and successor; 2) use the OFM to insert X in
position (which changes O(log2 N) elements); and 3) fix the BST by updating leaves changed by
the OFM. Note that updates must be performed post-order since both child keys are required to
compute the parent. DELETE is essentially the same: search in the BST, delete from OFM, update
BST.

To prove that INSERT and DELETE fall within the desired memory transfer bound, we will first prove
a weaker result which we will fix afterward.

Claim 2. If the OFM changes k leaves, then updating the BST requires O(B
k + logB+1 N) memory

transfers.
4Although the subtrees each have size at most B, they may not align to cache boundaries; e.g., half in cache-line

i and half in line i + 1.

5

Proof. As before, consider the level of recursion “straddling” B. Consider the bottom two levels:
1) chunks of size ≤ B; and 2) chunks of size > B. Type 2 chunks contain O(B2 + 1) type 1
chunks. In particular, we want to consider the group of type 2 chunks spanning the k leaves that
the OFM changed. As long as M ≥ 4B5, the cost of updating one type 2 chunk (equal to the
cost of scanning it) is O(|type2|) memory transfers. Summing across all the type 2 chunks, these B
bottom-most updates cost O(B

k) memory transfers.

Say that each type 2 chunk has size J . After the previous series of updates at the bottom 2 levels,
each type 2 chunks is effectively reduced to 1 node. Now consider the larger subtrees composed of
those type 2 chunks; again these larger subtrees also have size J > B since we are at the level of
detail “straddling” B. So there are O(J

k) = O(B
k) BST nodes to traverse before the LCA of the k

changed elements is reached. Above the LCA, there are O(logB+1 N) elements remaining on the
path to the root, each of which may incur a memory transfer. So the total then is O(B

k +logB+1 N)
memory transfers.

At this point, we can perform updates with O(log
B

2 N + logB+1 N) memory transfers. This is too

costly if B = o(log N log log N). We can rid ourselves of the log
B

2 N component using a technique
we saw first in the lecture about y-fast trees: indirection.

4.2.3 Wrapping Up: Adding Indirection

Recall that indirection involves grouping the elements into Θ(log
N

N groups of size Θ(log N) elements
each. Now we will create the OFM structure over the minimum of each group. As a result, the
vEB-style BST over the OFM array will act over Θ(log

N
N leaves instad of Θ(N) leaves.

The vEB storage allows us to search the top structure in O(logB+1 N); we will also have to scan one
lower group at cost O(log

B
N) for a total search cost of O(logB+1 N) memory transfers. Now INSERT

and DELETE will require us to reform an entire group at a time, but this costs O(log
B

N) = O(logB N)
memory transfers, which is sufficiently cheap. As with y-fast trees, we will also want to manage the
size of the groups: they should be between 25% and 100% full. Groups that are too small or too
full can be merged then split or merged (respectively) as necessary by destroying and/or forming
new groups. We will need Ω(log N) updates to cause a merge or split. Thus the merge and split
costs can be charged to the updates, so their amortized cost is O(1). The minimum element only
needs to be updated when a merge or split occurs. So expensive updates to the vEB structure

only occur every O(log N) updates at cost O(logB+1 N+ log
B

2 N

) = O(log N) = O(logB+1 N). Thus all log N B
operations (SEARCH, INSERT, and DELETE) cost O(logB+1 N).

References

[1] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems.
Commun. ACM, 31(9):1116–1127, 1988.

5At any given time, we will be updating one of the bottom type 1 chunks within a single type 2 chunk. This
requires interacting with that bottom chunk and the top chunk in this level of the vEB layout.

6

[2] L. Arge. The buffer tree: A technique for designing batched external data structures.	 Algo
rithmica, 37(1):1–24, June 2003.

[3] L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley, and J. I. Munro. Cache-oblivious
priority queue and graph algorithm applications. In Proc. STOC ’02, pages 268–276, May
2002.

[4] M. A. Bender, E. D. Demaine, and M. Farach-Colton. Cache-oblivious B-trees. In Proc. FOCS
’00, pages 399–409, Nov. 2000.

[5] M. A. Bender, Z. Duan, J. Iacono, and J. Wu. A locality-preserving cache-oblivious dynamic
dictionary. In Proc. SODA ’02, pages 29–38, 2002.

[6] G. S. Brodal and R. Fagerberg.	 Funnel heap — a cache oblivious priority queue. In Proc.
ISAAC ’02, pages 219–228, 2002.

[7] G. S. Brodal and R. Fagerberg. Cache oblivious distribution sweeping. In Proc. ICALP ’03,
page 426, 2003.

[8] G. S. Brodal and R. Fagerberg.	 On the limits of cache-obliviousness. In Proc. STOC ’03,
pages 307–315, 2003.

[9] G. S. Brodal, R. Fagerberg, and R. Jacob.	 Cache oblivious search trees via binary trees of
small height. In Proc. SODA ’02, pages 39–48, 2002.

[10] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms. In
Proc. FOCS ’99, pages 285–298, 1999.

[11] H. Prokop. Cache-oblivious algorithms. Master’s thesis, Massachusetts Institute of Technology,
June 1999.

7

MIT OpenCourseWare
http://ocw.mit.edu

6.851 Advanced Data Structures
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

