
� �

6.851: Advanced Data Structures Spring 2010

Lecture 10 — March 8, 2010
Prof. Erik Demaine

1 Overview

In the last lecture we covered van Emde Boas and y-fast trees, integer data structures which support
insert, delete, predecessor, and successor operations in log(w) time. These data structures are based
on the Word RAM model, where we can manipulate a constant number of w-bit words in constant
time.

In this lecture we covered fusion trees, as described by Fredman and Willard [1]. A fusion tree is a
static data structure storing n w-bit integers which supports predecessor and successor queries in
O(logw n) time per query and O(n) space. There is also a dynamic version of fusion trees which
get O(logw(n) + log(log(n))) for updates, as described by Andersson and Thorup [2], but we did
not cover this. Depending on whether n is small or large compared to w, we can use fusion trees or

log nvan Emde Boas trees, and our query time will be O(min log w , log w). This minimum will never

be greater than O(
√

log n), giving us a better than logarithmic bound which only depends on n.

2 Fusion Trees

A fusion tree is a B-tree with a branching factor of w1/5 . The depth of such a tree is logw1/5 (n) =
log(n)/ log(w1/5) = 5 log(n)/ log(w).

In order to actually achieve O(log(n)/ log(w)) time for queries, we must deal with each node we
encounter in constant time. However, there are w1/5 keys, each w bits long, in each node: in
constant time, we can only do a constant number of operations on a constant number of w-bit
words. To solve this problem, we will only compare the “interesting bits” of the keys.

2.1 Interesting bits

Consider what a trie containing the keys would look like. This trie would have height w, the length
of the keys, and would have k = O(w1/5) leaves (since the keys are distinct).

“Interesting bits” are bits which correspond to levels in this trie with branching nodes—these are
the bits we will look at in order to distinguish keys. Since our trie has k leaves, it has k − 1
branching nodes, and at most k − 1 interesting bits (since multiple branching nodes might be on
the same level). We will call the indices of the interesting bits b0 through br−1.

1

2.2 Sketches

To get the sketch of a word x, we delete all the bits except the interesting bits. Order is preserved:
for our keys xi, we have xi < xj if and only if sketch(xi) < sketch(xj).

As an example, consider the case where we have four 4-bit words; 0000, 0010, 1100, and 1111.
Only the first and third bits are interesting, so the sketches of these keys are 00, 01, 10, and 11.
When we query the tree, we compare sketches instead of comparing keys, so that we can compare
a query’s sketch with the sketches of all w1/5 keys at a node in constant time.

2.3 Querying the fusion tree

If we query the fusion tree just based on sketches, however, we can encounter a problem. Say we
query for 0101. Its sketch is 00, but it lies between 0010 (with sketch 01) and 1100 (with sketch
10). But knowing the node 0000 is actually useful when querying for 0101. We can find the longest
common prefix of the query and the node found (or, equivalently, the lowest common ancestor in
the trie). If the sketch of our query did not exactly match the sketch of one of our keys, then
instead we use the key xi whose sketch is the predecessor or successor of q’s sketch, whichever gives
the longer common prefix. Call this common ancestor in the trie y.

We can find y by taking the binary XOR of sketch(q) and sketch(xi), and looking at the most
significant bit of the result. This bit cannot be an important bit: if it were, it would have been
included in the sketch and the problem would not have occured. Andersson, Miltersen, and Thorup
showed that the most significant bit can be found in constant time as an AC0 operation [3]. It can
also be found on most modern CPUs with a single instruction.

There are two symmetric cases, depending on whether our query is in the left or right subtree of
y. In our example, the query is in the right subtree. In this case the predecessor of our query is
the largest element in the left subtree of y. We know no keys lie in the right subtree of y: since y
is not at an interesting level of the trie, no branching could have occured at y. To find the largest
element of the left subtree, we query for the sketch of e = y011...11 (or e = y100...00 in the
symmetric case). e is easy to compute with binary ANDs and ORs. Since the prefix of e is y0, a
query for it will fall into the correct subtree. Since all the remaining bits of e are 1’s, the result of
the query will be the key xi with the greatest sketch in the left subtree—but since the sketches of
the xi’s are in the same order as the xi’s themselves, this gives the greatest xi in the left subtree,
which is exactly what we wanted. We can connect the xi’s in a linked list to make it easy to find
the successor once we’ve found the predecessor, or vice versa.

So, the algorithm for querying a fusion tree looks like this:

(a) Compute sketch(q).

(b) Search for sketch(q) among the sketches of the xi’s.

(c) Compute the lowest common ancestor y of q and the key whose sketch is the predecessor or
successor of q’s sketch.

(d) Compute e, which is either y01...1 or y10...0.

2

�

� � �

(e) Search for sketch(e) among the sketches of the xi’s. This will give the real predecessor or
successor of q: use the linked list to find the other.

(f) Unsketch the results.

All that remains is to describe how we compute sketches, and how we compare sketch(q) to all
w1/5 of a node’s key sketches in constant time.

2.4 Computing the sketch in constant time

Calculating the perfect sketch in constant time is not possible on a word RAM, so instead we find
an approximate sketch. The approximate sketch has all the interesting bits in the correct order,
but can also have extra 0’s padding it.

We want to be able to store all w1/5 key sketches at a node in a constant number of words, so the
approximate sketch should take at most O(w4/5) bits. We compute the sketch of our query q in
constant time in the following way:

(a) Mask out all non-interesting bits: x� = x AND
� r−1 2bi .i=0

(b) Multiply x� by m = r−1 2mj .j=0

r−1 r−1(c) The product is i,j xi2bi+mj ; AND it with i=0 2
bi+mi to get i=0 xi2bi+mi .

(d) Right shift by m0 + b0 to remove unnecessary trailing zeros.

Claim: For any set of bi’s there is a set of mi’s of the same size such that

(a) There are no collisions: bi + mj = bi� + mj� if and only if i = i� and j = j�.

(b) Order is preserved: b0 + m0 < b1 + m1 < . . . < br−1 + mr−1

(c) The resulting sketch is short enough: (br−1 + mr−1) − (b0 + m0) = O(r4) = O(w4/5)

Proof: We will first choose m�
0 through m�

r−1, all at most r3, such that the bi + m�
j are distinct

modulo r3 for all i, j. This can be done by choosing the values in order. Say that values m�
0 through

m�
t−1 have been chosen already. To choose the next value m�

t, we choose any value not equal to
m�

i + bj − bk for 0 ≤ i < t, 0 ≤ j < r, 0 ≤ k < r. This will always be possible because we have r3

total values to choose from, of which at most tr2 are invalid. Since t < r, there must be at least
one valid option left.

The values m�
i might not satisfy the order-preserving property. So to get our final values, we let

mi = m�
i + (ir3) + ((w − bi) rounded down to be a multiple of r 3)

The three properties now hold:

3

� �

(a) mi ≡ m�
i (mod r3), so all the bi +mj are still distinct modulo r3, implying they are completely

distinct.

(b)	 mi + bi is in the r3-sized interval after (w/r3 + i) r3, so order is preserved. ·

(c)	 m0 + b0 is approximately w, and mr−1 + br−1 is approximately w + r4, so their difference is
O(r4).

2.5 Multiple comparisons in constant time

We need to be able to find where sketch(q) lies among the sketches of keys at a given node in
constant time. We will do so using something called the “node sketch.”

Node Sketch: We store all the sketches of the xi’s at a node in a single word by prepending a 1
to each and concatenating them. The result will look like this: 1sketch(x0) . . . 1sketch(xk−1).

In order to compare sketch(q) to all the key sketches with one subtraction, we take sketch(q) and
make k copies of it in a word 0sketch(q) . . . 0sketch(q). If the sketches were 6 bits long, we would
multiply sketch(q) by 0000001. . . 0000001. Then we subtract this value from the node sketch.
This lets us subtract 0sketch(q) from each 1sketch(xi) with a single operation: since 1sketch(xi) is
always bigger than 0sketch(q), carrying will not cause the subtractions to interfere with each other.
In fact, the first bit of each block will be 1 if and only if sketch(q) ≤ sketch(xi). After subtracting,
we AND the result with 1000000. . . 1000000 to mask all but the first bit of each block.

The sketch(xi)’s are sorted in each node, so for some index k we have sketch(q) > sketch(xi) when
i < k and sketch(q) ≤ sketch(xi) otherwise. We need to find this index k. Equivalently, we need
to find the number of bits which are equal to 1 in the above result. To do this, we can multiply by
0000001. . . 0000001: all the bits which were set to 1 will collide in the first block of the result, so
we can find their sum by looking at that block.

References

[1] Michael L. Fredman, Dan E. Willard: Surpassing the Information Theoretic Bound with Fusion
Trees. J. Comput. Syst. Sci. 47(3): 424-436 (1993)

[2] Arne Andersson, Mikkel Thorup: Dynamic ordered sets with exponential search trees. J. ACM
(JACM) 54(3):13 (2007)

[3] Arne Andersson, Peter Bro Miltersen, Mikkel Thorup:	 Fusion Trees can be Implemented with
AC Instructions Only. Theor. Comput. Sci. (TCS) 215(1-2):337-344 (1999)

4

MIT OpenCourseWare
http://ocw.mit.edu

6.851 Advanced Data Structures
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

