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1 Overview 

In the last lecture we introduced ray shooting, where we determine which is the first object in 
a set intersected by a given ray. We overviewed how to solve this problem if our objects are 
simple polygons. This lecture explores ray shooting more generally, beginning with data structures 
designed to perform halfspace and simplex range queries such as partition trees, and continuing 
with an explanation of how to use these data structures to perform ray shooting. 

2 Partition Trees 

Problem. Given a pointset S = {p1, p2, . . . , pn}, we would like to perform two sorts of queries: 

1. Halfspace Range Queries: find properties relating to the subset of S on one side of a line hq 

(e.g., how many points are above hq?). 

2. Simplex Range Queries: find properties relating to the subset of S inside a simplex tq (e.g., 
how many points lie inside tq?). In two dimensions, a simplex is a triangle, and we will use 
two-dimensional examples for the remainder of these notes. 

Idea. Partition S into r disjoint subsets S1, S2, . . . , Sr. Each subset Si is associated with a triangle 
ti that contains the points in that subset (the triangles need not be disjoint). We call this partition 
Ψ = {(S1, t1), (S2, t2), . . . , (Sr, tr)}. When finding the points in the halfplane defined by a query 
line hq, we can easily accept or discard as necessary the points lying in a triangle that do not 
intersect hq. We then recurse on the remaining subsets in triangles intersecting hq. 
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The crossing number of Ψ is the maximum number of triangles that can be intersected by some 
line. 

We call Ψ fine if |Si| ≤ 2
r
n ∀ Si, meaning every subset of S has no more than twice the average 

number of points per subset (i.e., the subsets are fairly equally distributed). 

Jǐŕı Matoušek has proved that for every r such that 1 ≤ n, there exists a fine partition Ψ with r ≤
1+ǫ)size r and crossing number O(

√
r), and that Ψ can be computed in O(n time for ǫ > 0 [1]. If 

we partition S in this manner, a query line hq cannot intersect more than O(
√

r) triangles. Thus 
we will need to recurse on at most O(

√
r) subsets. 

Performance. Parition trees yield the following performance for a halfspace range query: 

Query time: O(n 2

1 +ǫ)• 

• Storage: O(n) 

Preprocessing: O(n1+ǫ)• 

The derivation is left as a homework exercise. 

For a simplex range query, we know that the query triangle tq intersects no more than three times 
the crossing number of our partition. Thus, the query time depends on tq, but will never be worse 
than the bounds given for a halfspace range query. 

tq 

3 Multi-level Partition Trees 

3.1 First attempt 

Problem. Given a set of line segments, we would like to find the segments stabbed by a query 
line hq; i.e., all the segments with one endpoint in the halfplane above hq, h

+, and the other in 
halfplane below hq, h

− . 
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Idea. We split the endpoints of the line segments into two sets, Sl and Sr, such that each line 
segment has an endpoint in each set. Using a partition tree, we find all segments with an endpoint 
in h+ . Then using a second-level partition tree, we check if the other endpoint of each segment lies 
in h− . 

Performance. 

Query time: O(n 2

1 +ǫ)• 

• Storage: O(n log n) 

Preprocessing: O(n1+ǫ)• 

3.2 Decreasing query time via increased storage 

Geometric duality transform. If we have a point p = (px, py) in the primal, we transform it 
into a line p ∗ in the dual with y = pxx − py. A line in the primal is likewise transformed into a 
point in the dual. Thus, if we consider a halfplane range query over pointset S with query line 
hq in the dual, we obtain a query point h∗ 

q and a set |S∗ | of lines, which form O(n2) cells (regions 
enclosed by a subset of the lines). The points in S above hq correspond to the lines in S∗ below 
h∗ 

q (imagine sweeping hq, which corresponds to moving h∗ 
q down vertically). These lines will be the 

same regardless of where h∗ 
q is in a given cell. 
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Locus approach. We precompute all cells in the dual, and locate the correct cell given a query. 
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1. Storage: O(n2), corresponding to the number of cells. 

2. Query time: O(log n) for finding the correct cell (via trapezoidal maps). 

3.3 Other results 

A data structure with O(
√

n2O(log∗ n)) query time [2]. • 

In dimension d, a data structure with O(n 1− 1 
d +ǫ) query time and O(n1+ǫ) storage [2]. •


nQuery time lower bound: Ω( ) (where m is storage) [?]. 
m 

1 
d

•

log n 

• Halfspace reporting in two dimensions with O(log n) query time and O(n) storage [?]. 

•
 Simplex reporting in O(m1+ǫ) space and O( log2 n) query time [5]. n 
1 
dm 

Ray Shooting 

The ray shooting problem can be thought of in two ways: 

1. Decision: Given a point q, direction d, and distance λ, does the line segment of length λ from 
d along d intersect anything? 

2. Optimization: Given a point q and direction d, what is the smallest λ such that the decision 
problem can be answered positively? 

We notice that the decision version of the ray shooting problem is monotone, meaning that after 
reaching some minimal value λ, the answer to the decision problem will be positive for all larger 
values of λ. 

Given a monotone decision algorithm, we can construct a new algorithm that solves the optimization 
problem by symbolically evaluating the original decision algorithm. At the start of the execution, 
we say λ has values ranging from (−∞, +∞). Whenever λ is used in a polynomial expression as 
an input to a branch, we can solve the polynomial for the critical points at which the branch goes 
one way or the other, and evaluate both under each set. 

Obviously, this approach is slow, since the total work increases by a factor of two for every branch 
executed. We can improve its performance by “batching up” polynomials. If the polynomials have 
at most p terms, then our optimization algorithm runs in O(p) + O(log pTD), where TD is the time 
to run the decision algorithm. 

To answer a weaker version of the ray shooting decision problem, we consider shooting a ray into 
a set of hyperplanes. Since λ is given in the decision problem, the problem is to check if there are 
any hyperplanes between the two ends of the line segment formed by q, the ray starting point, and 
q + dλ, the end of the ray. To solve this problem, we can use geometric duality to transform all 
of the hyperplanes into points and line segment ends into hyperplanes. The two line segment ends 
will form a wedge out of two hyperplanes. If and only if the line segment intersects any hyperplanes 
in the primal, there will be points between the two hyperplanes in the dual. 
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