
6.851: Advanced Data Structures Spring 2010

Lecture 6 — February 23, 2010
Dr. André Schulz

1 Overview

In the last lecture we introduced ray shooting, where we determine which is the first object in
a set intersected by a given ray. We overviewed how to solve this problem if our objects are
simple polygons. This lecture explores ray shooting more generally, beginning with data structures
designed to perform halfspace and simplex range queries such as partition trees, and continuing
with an explanation of how to use these data structures to perform ray shooting.

2 Partition Trees

Problem. Given a pointset S = {p1, p2, . . . , pn}, we would like to perform two sorts of queries:

1. Halfspace Range Queries: find properties relating to the subset of S on one side of a line hq

(e.g., how many points are above hq?).

2. Simplex Range Queries: find properties relating to the subset of S inside a simplex tq (e.g.,
how many points lie inside tq?). In two dimensions, a simplex is a triangle, and we will use
two-dimensional examples for the remainder of these notes.

Idea. Partition S into r disjoint subsets S1, S2, . . . , Sr. Each subset Si is associated with a triangle
ti that contains the points in that subset (the triangles need not be disjoint). We call this partition
Ψ = {(S1, t1), (S2, t2), . . . , (Sr, tr)}. When finding the points in the halfplane defined by a query
line hq, we can easily accept or discard as necessary the points lying in a triangle that do not
intersect hq. We then recurse on the remaining subsets in triangles intersecting hq.

hq

discard

accept

recurse

1

The crossing number of Ψ is the maximum number of triangles that can be intersected by some
line.

We call Ψ fine if |Si| ≤ 2
r
n ∀ Si, meaning every subset of S has no more than twice the average

number of points per subset (i.e., the subsets are fairly equally distributed).

Jǐŕı Matoušek has proved that for every r such that 1 ≤ n, there exists a fine partition Ψ with r ≤
1+ǫ)size r and crossing number O(

√
r), and that Ψ can be computed in O(n time for ǫ > 0 [1]. If

we partition S in this manner, a query line hq cannot intersect more than O(
√

r) triangles. Thus
we will need to recurse on at most O(

√
r) subsets.

Performance. Parition trees yield the following performance for a halfspace range query:

Query time: O(n 2

1 +ǫ)•

• Storage: O(n)

Preprocessing: O(n1+ǫ)•

The derivation is left as a homework exercise.

For a simplex range query, we know that the query triangle tq intersects no more than three times
the crossing number of our partition. Thus, the query time depends on tq, but will never be worse
than the bounds given for a halfspace range query.

tq

3 Multi-level Partition Trees

3.1 First attempt

Problem. Given a set of line segments, we would like to find the segments stabbed by a query
line hq; i.e., all the segments with one endpoint in the halfplane above hq, h

+, and the other in
halfplane below hq, h

− .

2

P

h+

h−

hq

Idea. We split the endpoints of the line segments into two sets, Sl and Sr, such that each line
segment has an endpoint in each set. Using a partition tree, we find all segments with an endpoint
in h+ . Then using a second-level partition tree, we check if the other endpoint of each segment lies
in h− .

Performance.

Query time: O(n 2

1 +ǫ)•

• Storage: O(n log n)

Preprocessing: O(n1+ǫ)•

3.2 Decreasing query time via increased storage

Geometric duality transform. If we have a point p = (px, py) in the primal, we transform it
into a line p ∗ in the dual with y = pxx − py. A line in the primal is likewise transformed into a
point in the dual. Thus, if we consider a halfplane range query over pointset S with query line
hq in the dual, we obtain a query point h∗

q and a set |S∗ | of lines, which form O(n2) cells (regions
enclosed by a subset of the lines). The points in S above hq correspond to the lines in S∗ below
h∗

q (imagine sweeping hq, which corresponds to moving h∗
q down vertically). These lines will be the

same regardless of where h∗
q is in a given cell.

primal dual

� �

�

hq

�

�

h∗
q

�

�

�

�

Locus approach. We precompute all cells in the dual, and locate the correct cell given a query.

3

4

1. Storage: O(n2), corresponding to the number of cells.

2. Query time: O(log n) for finding the correct cell (via trapezoidal maps).

3.3 Other results

A data structure with O(
√

n2O(log∗ n)) query time [2]. •

In dimension d, a data structure with O(n 1− 1
d +ǫ) query time and O(n1+ǫ) storage [2]. •

nQuery time lower bound: Ω() (where m is storage) [?].
m

1
d

•

log n

• Halfspace reporting in two dimensions with O(log n) query time and O(n) storage [?].

•
 Simplex reporting in O(m1+ǫ) space and O(log2 n) query time [5]. n
1
dm

Ray Shooting

The ray shooting problem can be thought of in two ways:

1. Decision: Given a point q, direction d, and distance λ, does the line segment of length λ from
d along d intersect anything?

2. Optimization: Given a point q and direction d, what is the smallest λ such that the decision
problem can be answered positively?

We notice that the decision version of the ray shooting problem is monotone, meaning that after
reaching some minimal value λ, the answer to the decision problem will be positive for all larger
values of λ.

Given a monotone decision algorithm, we can construct a new algorithm that solves the optimization
problem by symbolically evaluating the original decision algorithm. At the start of the execution,
we say λ has values ranging from (−∞, +∞). Whenever λ is used in a polynomial expression as
an input to a branch, we can solve the polynomial for the critical points at which the branch goes
one way or the other, and evaluate both under each set.

Obviously, this approach is slow, since the total work increases by a factor of two for every branch
executed. We can improve its performance by “batching up” polynomials. If the polynomials have
at most p terms, then our optimization algorithm runs in O(p) + O(log pTD), where TD is the time
to run the decision algorithm.

To answer a weaker version of the ray shooting decision problem, we consider shooting a ray into
a set of hyperplanes. Since λ is given in the decision problem, the problem is to check if there are
any hyperplanes between the two ends of the line segment formed by q, the ray starting point, and
q + dλ, the end of the ray. To solve this problem, we can use geometric duality to transform all
of the hyperplanes into points and line segment ends into hyperplanes. The two line segment ends
will form a wedge out of two hyperplanes. If and only if the line segment intersects any hyperplanes
in the primal, there will be points between the two hyperplanes in the dual.

4

References

[1] J. Matoušeck, Efficient partition trees, Discrete & Computational Geometry, 1992.

[2] J. Matoušeck, Range searching with efficient hierarchical cuttings, Symposium on Computa
tional Geometry, 1992.

[3] B. Chazelle, Lower bounds on the complexity of multidimensional searching, 27th Annual Sym
posium on Foundations of Computer Science, 27-29 October 1986.

[4] B. Chazelle, H. Edelsbrunner, Linear space data structures for two types of range search,
Discrete and Computational Geometry, 113-126, 1987.

[5] B. Chazelle, M. Sharir, E. Welzl, Quasi-optimal upper bounds for simplex range searching and

new zone theorems, Algorithmica, 1992.

5

MIT OpenCourseWare
http://ocw.mit.edu

6.851 Advanced Data Structures
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

9

http://ocw.mit.edu
http://ocw.mit.edu/terms

